会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • GAS EXCHANGE SYSTEM FLOW CONFIGURATION WITH THERMALLY INSULATED SAMPLE CHAMBER
    • 气体交换系统流量配置与热绝缘样品室
    • US20140360250A1
    • 2014-12-11
    • US14247102
    • 2014-04-07
    • Mark A. JOHNSONAndrew S. ParrRobert D. Eckles
    • Mark A. JOHNSONAndrew S. ParrRobert D. Eckles
    • G01N33/00
    • G01N33/0009B33Y70/00B33Y80/00G01N21/05G01N21/3504G01N33/004G01N33/0098G01N2021/8466
    • System flow path, designs that minimize the impact of gas diffusion sources and sinks. By reducing the magnitude of parasitic sources and sinks, lower rates of photosynthesis and transpiration can be more accurately measured, e.g., without the need for extensive empirical compensation. According to one aspect, a gas exchange analysis system includes a sample chamber defining a measurement volume for analysis of a sample, the sample chamber having an inlet and an outlet, wherein the internal surface(s) of the chamber defining the measurement volume are metal plated. The system also typically includes a source of gas coupled with the inlet of the sample chamber, and a gas analyzer coupled with the outlet of the sample chamber and configured to measure a concentration of one or more gases exiting the chamber, whereby the metal plated internal surface(s) of the chamber reduces sorption of the one or more gases within the chamber. The low thermal conductivity of the chamber substrate material provides an energy efficient means of sample temperature control. The low density of the chamber substrate material reduces chamber weight for improved portability and ergonomics.”
    • 系统流动路径,使气体扩散源和汇的影响最小化的设计。 通过减少寄生源和汇的幅度,可以更准确地测量较低的光合作用和蒸腾速率,例如,不需要广泛的经验补偿。 根据一个方面,一种气体交换分析系统包括:样品室,其限定用于样品分析的测量体积,所述样品室具有入口和出口,其中限定所述测量体积的所述室的内表面是金属 镀。 该系统还通常包括与样品室的入口耦合的气体源,以及与样品室的出口耦合的气体分析器,其被配置为测量离开室的一种或多种气体的浓度,由此内部金属镀 室的表面减少了室内的一种或多种气体的吸附。 室衬底材料的低热导率提供了一种能量效率的样品温度控制手段。 腔室基材材料的低密度降低了室重量,从而改善了便携性和人体工程学。
    • 3. 发明申请
    • GAS EXCHANGE SYSTEM FLOW CONFIGURATION WITH THERMALLY INSULATED SAMPLE CHAMBER
    • 气体交换系统流量配置与热绝缘样品室
    • US20120074325A1
    • 2012-03-29
    • US13149709
    • 2011-05-31
    • Mark A. JohnsonAndrew S. ParrRobert D. Eckles
    • Mark A. JohnsonAndrew S. ParrRobert D. Eckles
    • G01N21/35
    • G01N33/0009B33Y70/00B33Y80/00G01N21/05G01N21/3504G01N33/004G01N33/0098G01N2021/8466
    • System flow path designs that minimize the impact of gas diffusion sources and sinks. By reducing the magnitude of parasitic sources and sinks, lower rates of photosynthesis and transpiration can be more accurately measured, e.g., without the need for extensive empirical compensation. According to one aspect, a gas exchange analysis system includes a sample chamber defining a measurement volume for analysis of a sample, the sample chamber having an inlet and an outlet, wherein the internal surface(s) of the chamber defining the measurement volume are metal plated. The system also typically includes a source of gas coupled with the inlet of the sample chamber, and a gas analyzer coupled with the outlet of the sample chamber and configured to measure a concentration of one or more gases exiting the chamber, whereby the metal plated internal surface(s) of the chamber reduces sorption of the one or more gases within the chamber. The low thermal conductivity of the chamber substrate material provides an energy efficient means of sample temperature control. The low density of the chamber substrate material reduces chamber weight for improved portability and ergonomics.”
    • 系统流路设计,尽量减少气体扩散源和水槽的影响。 通过减少寄生源和汇的幅度,可以更准确地测量较低的光合作用和蒸腾速率,例如,不需要广泛的经验补偿。 根据一个方面,一种气体交换分析系统包括:样品室,其限定用于样品分析的测量体积,所述样品室具有入口和出口,其中限定所述测量体积的所述室的内表面是金属 镀。 该系统还通常包括与样品室的入口耦合的气体源,以及与样品室的出口耦合的气体分析器,其被配置为测量离开室的一种或多种气体的浓度,由此内部金属镀 室的表面减少了室内的一种或多种气体的吸附。 室衬底材料的低热导率提供了一种能量效率的样品温度控制手段。 腔室基材材料的低密度降低了室重量,从而改善了便携性和人体工程学。
    • 4. 发明申请
    • GAS EXCHANGE SYSTEM FLOW CONFIGURATION
    • 气体交换系统流量配置
    • US20120074324A1
    • 2012-03-29
    • US12889289
    • 2010-09-23
    • Bernard GentyMark A. JohnsonRobert D. Eckles
    • Bernard GentyMark A. JohnsonRobert D. Eckles
    • G01N21/35
    • G01N21/3504G01N21/05
    • System flow path designs that minimize the impact of gas diffusion sources and sinks. By reducing the magnitude of parasitic sources and sinks, lower rates of photosynthesis and transpiration can be more accurately measured, e.g., without the need for extensive empirical compensation. According to one aspect, a sensor head for use in a gas exchange analysis system includes a sample chamber defining a measurement volume for analysis of a sample, the sample chamber having an inlet and an outlet, and a flow splitting mechanism located proximal to the sample chamber, the mechanism configured to split a gas flow received at an input port from a remote source to a first output port and to a second output port, wherein the first output port is coupled with the inlet of the sample chamber. The sensor head also typically includes a first gas analyzer coupled with the outlet of the sample chamber and configured to measure a concentration of one or more gases, and a second gas analyzer coupled with the second output port of the flow splitting mechanism and configured to measure a concentration of the one or more gases. Advantageously, gas diffusion sources and sinks are reduced due to the proximity of the flow splitting mechanism with the sample chamber and gas analyzers. This advantageously reduces measurement error associated with or attributable to gas diffusion sources and sinks. The proximity advantage derives from minimizing the joints, gaskets, fittings, tubing lengths, and materials all prone or susceptible to gas diffusion.
    • 系统流路设计,尽量减少气体扩散源和水槽的影响。 通过减少寄生源和汇的幅度,可以更准确地测量较低的光合作用和蒸腾速率,例如,不需要广泛的经验补偿。 根据一个方面,用于气体交换分析系统的传感器头包括样品室,其限定用于样品分析的测量体积,样品室具有入口和出口以及位于样品附近的分流机构 所述机构被配置为将在从远程源的输入端口处接收的气流分裂到第一输出端口和第二输出端口,其中所述第一输出端口与所述样品室的入口耦合。 传感器头还通常包括与样品室的出口耦合并被配置为测量一种或多种气体的浓度的第一气体分析仪和与分流机构的第二输出端口耦合的第二气体分析器,并且被配置为测量 一种或多种气体的浓度。 有利的是,由于分流机构与样品室和气体分析器的接近,气体扩散源和水槽被减少。 这有利地减少了与气体扩散源和吸收器相关联或归因于气体扩散源和吸收器的测量误差。 接近的优点来自于使接头,垫圈,接头,管道长度以及易于气体扩散的材料最小化。
    • 5. 发明授权
    • Gas exchange system flow configuration
    • 气体交换系统流量配置
    • US08610072B2
    • 2013-12-17
    • US12889289
    • 2010-09-23
    • Bernard GentyMark A. JohnsonRobert D. Eckles
    • Bernard GentyMark A. JohnsonRobert D. Eckles
    • G01N21/35
    • G01N21/3504G01N21/05
    • System flow path designs that minimize the impact of gas diffusion sources and sinks. By reducing the magnitude of parasitic sources and sinks, lower rates of photosynthesis and transpiration can be more accurately measured, e.g., without the need for extensive empirical compensation. According to one aspect, a sensor head for use in a gas exchange analysis system includes a sample chamber defining a measurement volume for analysis of a sample, the sample chamber having an inlet and an outlet, and a flow splitting mechanism located proximal to the sample chamber, the mechanism configured to split a gas flow received at an input port from a remote source to a first output port and to a second output port, wherein the first output port is coupled with the inlet of the sample chamber. The sensor head also typically includes a first gas analyzer coupled with the outlet of the sample chamber and configured to measure a concentration of one or more gases, and a second gas analyzer coupled with the second output port of the flow splitting mechanism and configured to measure a concentration of the one or more gases. Advantageously, gas diffusion sources and sinks are reduced due to the proximity of the flow splitting mechanism with the sample chamber and gas analyzers. This advantageously reduces measurement error associated with or attributable to gas diffusion sources and sinks. The proximity advantage derives from minimizing the joints, gaskets, fittings, tubing lengths, and materials all prone or susceptible to gas diffusion.
    • 系统流路设计,尽量减少气体扩散源和水槽的影响。 通过减少寄生源和汇的幅度,可以更准确地测量较低的光合作用和蒸腾速率,例如,不需要广泛的经验补偿。 根据一个方面,用于气体交换分析系统的传感器头包括样品室,其限定用于样品分析的测量体积,样品室具有入口和出口以及位于样品附近的分流机构 所述机构被配置为将在从远程源的输入端口处接收的气流分裂到第一输出端口和第二输出端口,其中所述第一输出端口与所述样品室的入口耦合。 传感器头还通常包括与样品室的出口耦合并被配置为测量一种或多种气体的浓度的第一气体分析仪和与分流机构的第二输出端口耦合的第二气体分析器,并且被配置为测量 一种或多种气体的浓度。 有利的是,由于分流机构与样品室和气体分析器的接近,气体扩散源和水槽被减少。 这有利地减少了与气体扩散源和吸收器相关联或归因于气体扩散源和吸收器的测量误差。 接近的优点来自于使接头,垫圈,接头,管道长度以及易于气体扩散的材料最小化。
    • 7. 发明授权
    • Multi-pass optical cell with actuator for actuating a reflective surface
    • 具有用于致动反射表面的致动器的多通光学单元
    • US08018981B2
    • 2011-09-13
    • US11403089
    • 2006-04-12
    • Robert D. EcklesTyler G. Anderson
    • Robert D. EcklesTyler G. Anderson
    • H01S3/08
    • G01N21/031G01J3/0297G01J3/42G01N21/15G01N33/0047G01N2021/151G01N2021/152G01N2021/3513G01N2021/399
    • A multi-pass optical cell with an actuator for actuating a reflective surface is provided. In one preferred embodiment, an apparatus is provided comprising a first reflective surface, a second reflective surface, and a support structure supporting the first and second reflective surfaces. The support structure positions the first and second reflective surfaces to create an optical cell. The apparatus also comprises a source and a detector, which are positioned such that light emitted from the source is reflected in the optical cell at least one time between the first and second reflective surfaces before reaching the detector. The apparatus further comprises an actuator coupled with and operative to actuate the first reflective surface. In some embodiments, the actuator rotates the first reflective surface. Also, in some embodiments, the multi-pass optical cell is an open path multi-pass optical cell, while, in other embodiments, the multi-pass optical cell is a closed path multi-pass optical cell.
    • 提供具有用于致动反射表面的致动器的多通光学单元。 在一个优选实施例中,提供了包括第一反射表面,第二反射表面和支撑第一和第二反射表面的支撑结构的装置。 支撑结构定位第一和第二反射表面以创建光学单元。 该设备还包括源和检测器,其被定位成使得从光源发射的光在到达检测器之前在第一和第二反射表面之间至少一次在光学单元中反射。 所述装置还包括与所述第一反射表面联动并且可操作地致动所述第一反射表面的致动器。 在一些实施例中,致动器旋转第一反射表面。 此外,在一些实施例中,多遍光学单元是开放式多通道光学单元,而在其他实施例中,多通道光学单元是封闭路径多通道光学单元。
    • 10. 发明授权
    • Apparatus and method for simultaneous measurement of carbon dioxide and
water
    • 用于同时测量二氧化碳和水的装置和方法
    • US5457320A
    • 1995-10-10
    • US279959
    • 1994-07-25
    • Robert D. EcklesDayle K. McDermittJonathan M. Welles
    • Robert D. EcklesDayle K. McDermittJonathan M. Welles
    • G01N21/35G01N21/61G01N21/05
    • G01N21/3504
    • To measure water vapor and carbon dioxide, a gas analyzer includes a light source, a reference flow cell, a sample flow cell, a detector and a source of gas. The light source, flow cells and detector are arranged so that the detector detects light transmitted from said light source through the flow cells. The flow cells have folded paths for the light. A reference signal is subtracted from a sample signal to obtain an independant variable. Carbon dioxide and air mixed with carbon dioxide are supplied as required. The carbon dioxide is supplied from a container through capillary tubes. Heat is applied to the tubes to control the flow rate. A signal representing gross concentration of the carbon dioxide as a dependant variable is obtained from said independent variable from an empirically determined polynomial.
    • 为了测量水蒸气和二氧化碳,气体分析仪包括光源,参考流动池,样品流动池,检测器和气体源。 光源,流通池和检测器被布置成使得检测器检测从所述光源透过流动池的光。 流动池具有用于光的折叠路径。 从采样信号中减去参考信号以获得独立变量。 根据需要提供二氧化碳和二氧化碳混合空气。 二氧化碳从容器通过毛细管供应。 对管进行加热以控制流速。 根据经验确定的多项式从所述独立变量获得表示作为因变量的二氧化碳总浓度的信号。