会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • MICROFLUIDIC ARRANGEMENT FOR CAPILLARY DRIVEN FLUIDIC CONNECTION
    • WO2021144371A2
    • 2021-07-22
    • PCT/EP2021/050709
    • 2021-01-14
    • MIDIAGNOSTICS NV
    • DE GREVE, KlaasWHYTE, Murray, JSPRINGER, MatthewDAVIES, Oliver
    • B01L3/00B01L2200/027B01L2200/028B01L2300/0816B01L2300/0874B01L2300/0887B01L2400/0406B01L3/502707B01L3/50273
    • The present inventive concept relates to a microfluidic arrangement (1) for capillary driven fluidic connection between capillary flow channels (8, 16). The microfluidic arrangement (1) comprises: a first microfluidic system (4) comprising a first surface (5), and a first capillary flow channel (8), wherein the first capillary flow channel (8) has an elongation in a first plane, and the first surface comprises an outlet opening (9) in a plane different from the first plane, the outlet opening defining an outlet area (35) in the first surface and being adapted to allow fluidic communication with the first capillary flow channel thereby forming a flow outlet (12) of the first capillary flow channel, and a second microfluidic system (6) comprising a second surface (7) and a second capillary flow channel (16), wherein the second capillary flow channel (16) has an elongation in a second plane parallel to the first plane, and a portion of the second surface (7) comprises an inlet opening (13) in a plane different from the second plane, the inlet opening defining an inlet area (33) in the second surface and being adapted to allow fluidic communication with the second capillary flow channel thereby forming a flow inlet (20) of the second capillary flow channel, wherein the first microfluidic system (4) and the second microfluidic system (6) are arranged with the first and the second surfaces in contact such that the flow outlet (12) and the flow inlet (20) are interfaced, thereby allowing capillary driven fluidic connection between the first and the second capillary flow channels (8, 16), wherein the outlet area (35) overlaps at least a portion of the inlet area (33), said at least a portion of the inlet area (33) overlapped by the outlet area (35) being smaller than the outlet area (35).