会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Process for preparing energetic materials
    • 制备高能材料的方法
    • US08075716B1
    • 2011-12-13
    • US09481043
    • 2000-01-11
    • Randall L. SimpsonRonald S. LeeThomas M. TillotsonLawrence W. HrubeshRosalind W. SwansigerGlenn A. Fox
    • Randall L. SimpsonRonald S. LeeThomas M. TillotsonLawrence W. HrubeshRosalind W. SwansigerGlenn A. Fox
    • C06B45/00
    • C06B45/00Y02P20/544
    • Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.
    • 溶胶 - 凝胶化学物质用于制备具有改进的均匀性的高能材料(爆炸物,推进剂和烟火),和/或可以铸造成近净形状和/或制成精密成型粉末。 溶胶 - 凝胶法是将反应性单体混合到溶液中的合成化学方法,发生聚合,导致高度交联的三维固体网络,导致凝胶。 高能材料可以在溶液形成期间或在该过程的凝胶阶段期间被引入。 组合物,孔和一次粒径,凝胶时间,表面积和密度可以通过溶液化学定制和控制。 然后使用超临界萃取干燥凝胶以产生高度多孔的低密度气凝胶或通过受控的缓慢蒸发以产生干凝胶。 在提取阶段施加应力可导致高密度材料。 因此,溶胶 - 凝胶法可用于精密雷管炸药制造,以及生产精密炸药,推进剂和烟火以及大功率复合材料。
    • 5. 发明申请
    • Aerogel and Xerogel Composites for use as Carbon Anodes
    • 气凝胶和Xerogel复合材料用作碳阳极
    • US20090017339A1
    • 2009-01-15
    • US12118571
    • 2008-05-09
    • John F. CooperThomas M. TillotsonLawrence W. Hrubesh
    • John F. CooperThomas M. TillotsonLawrence W. Hrubesh
    • H01M8/00H01M4/88
    • C10L5/44C04B35/524C04B35/624C04B35/62605C04B35/6264C04B35/62655C04B35/83C04B2235/48C04B2235/77C04B2235/96C10L5/46C10L5/48H01M4/587H01M4/96H01M8/143H01M2008/147Y02E50/10Y02E50/30Y02E60/526
    • A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.
    • 一种用于形成强化刚性阳极整料和燃料的方法及其制造方法。 该方法包括提供有机气凝胶或干凝胶前体的溶液,其包括酚醛树脂,苯酚(羟基苯),间苯二酚(1,3-二羟基苯)或邻苯二酚(1,2-二羟基苯)中的至少一种; 至少一种选自甲醛,乙醛和糠醛的醛化合物; 和碱金属碳酸盐或磷酸催化剂; 向所述前体溶液中加入包含碳的内部增强材料以形成前体混合物; 胶凝所述前体混合物形成复合凝胶; 干燥所述复合凝胶; 并且热解所述复合凝胶以形成可湿性气凝胶/碳复合材料或可湿性干凝胶/碳复合材料,其中所述复合材料包含炭和所述内部增强材料,并且其中所述复合材料适合用作阳极, 在熔融盐电化学燃料电池中在500℃至800℃范围内燃烧以产生电能。 还提供了附加的方法和系统/组合物。
    • 6. 发明授权
    • Method for producing nanostructured metal-oxides
    • 生产纳米结构金属氧化物的方法
    • US06986818B2
    • 2006-01-17
    • US09981076
    • 2001-10-16
    • Thomas M. TillotsonRandall L. SimpsonLawrence W. HrubeshAlexander Gash
    • Thomas M. TillotsonRandall L. SimpsonLawrence W. HrubeshAlexander Gash
    • C06B45/10
    • C01F7/34C01B13/32C01F17/0043C01G1/02C01G15/00C01G19/02C01G25/02C01G27/02C01G33/00C01G37/033C01G41/00C01G43/01C01G49/02C01P2002/82C01P2006/12C01P2006/14C01P2006/16C06B21/0058C06B33/00C06B47/00Y02P20/544
    • A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe3+, Cr3+, Al3+, Ga3+, In3+, Hf4+, Sn4+, Zr4+, Nb5+, W6+, Pr3+, Er3+, Nd3+, Ce3+, U3+ and Y3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of FexOy gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.
    • 使用溶胶 - 凝胶法生产纳米结构金属氧化物基材料的合成路线。 该方法使用稳定且廉价的水合金属无机盐和环境友好的溶剂如水和乙醇。 该合成涉及将金属盐溶解在溶剂中,然后加入质子清除剂,其迅速诱导凝胶形成。 可以采用临界点(超临界萃取)和大气(低温蒸发)干燥来分别制备单片气凝胶和干凝胶。 使用这种方法合成金属氧化物纳米结构材料已经使用无机盐如Fe 3+,3+,3+,3+, 3+,3+,3+,5+,4 +,4 +,3+, SUP> 4 +,Nb 5+,W 6+,Pr 3+,Er 3+, Nd SUP Nd Nd Nd Nd Nd Nd Nd Nd Nd,,,,,U U U U U U U U U U U U U U U U U U U U U U。。。。。。。。。 该方法是通用的,并且可以制备来自周期表的以下元素的纳米结构金属氧化物:组2至13,第14族(锗,锡,铅)的一部分,第15族的一部分(锑,铋),部分 第16组(onium),镧系元素和锕系元素。 溶胶 - 凝胶加工允许在凝胶化之前向粘性溶胶中添加不溶性材料(例如金属或聚合物),以在凝胶化时产生均匀分布的纳米复合材料。 作为示例,容易制备具有分布的Al金属的高分子纳米复合材料的Fe x O y O y y y凝胶。 组合物是稳定的,安全的,并且可以容易地点燃到耐火反应。
    • 7. 发明授权
    • Sol-gel manufactured energetic materials
    • 溶胶凝胶制成高能材料
    • US06893518B1
    • 2005-05-17
    • US10697477
    • 2003-10-29
    • Randall L. SimpsonRonald S. LeeThomas M. TillotsonLawrence W. HrubeshRosalind W. SwansigerGlenn A. Fox
    • Randall L. SimpsonRonald S. LeeThomas M. TillotsonLawrence W. HrubeshRosalind W. SwansigerGlenn A. Fox
    • B01J13/00C06B21/00C06B45/00D03D23/00
    • C06B21/0066B01J13/0091C06B21/0091C06B45/00Y02P20/544Y10S977/70Y10S977/775Y10S977/835Y10S977/895Y10S977/896
    • Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.
    • 溶胶 - 凝胶化学物质用于制备具有改进的均匀性的高能材料(爆炸物,推进剂和烟火),和/或可以铸造成近净形状和/或制成精密成型粉末。 溶胶 - 凝胶法是将反应性单体混合到溶液中的合成化学方法,发生聚合,导致高度交联的三维固体网络,导致凝胶。 高能材料可以在溶液形成期间或在该过程的凝胶阶段期间被引入。 组合物,孔和一次粒径,凝胶时间,表面积和密度可以通过溶液化学定制和控制。 然后使用超临界萃取干燥凝胶以产生高度多孔的低密度气凝胶或通过受控的缓慢蒸发以产生干凝胶。 在提取阶段施加应力可导致高密度材料。 因此,溶胶 - 凝胶法可用于精密雷管炸药制造,以及生产精密炸药,推进剂和烟火以及大功率复合材料。
    • 8. 发明授权
    • Aerogel and xerogel composites for use as carbon anodes
    • 气凝胶和干凝胶复合材料用作碳阳极
    • US07811711B2
    • 2010-10-12
    • US12118571
    • 2008-05-09
    • John F. CooperThomas M. TillotsonLawrence W. Hrubesh
    • John F. CooperThomas M. TillotsonLawrence W. Hrubesh
    • H01M4/88H01M8/14
    • C10L5/44C04B35/524C04B35/624C04B35/62605C04B35/6264C04B35/62655C04B35/83C04B2235/48C04B2235/77C04B2235/96C10L5/46C10L5/48H01M4/587H01M4/96H01M8/143H01M2008/147Y02E50/10Y02E50/30Y02E60/526
    • A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.
    • 一种用于形成强化刚性阳极整料和燃料的方法及其制造方法。 该方法包括提供有机气凝胶或干凝胶前体的溶液,其包括酚醛树脂,苯酚(羟基苯),间苯二酚(1,3-二羟基苯)或邻苯二酚(1,2-二羟基苯)中的至少一种; 至少一种选自甲醛,乙醛和糠醛的醛化合物; 和碱金属碳酸盐或磷酸催化剂; 向所述前体溶液中加入包含碳的内部增强材料以形成前体混合物; 胶凝所述前体混合物形成复合凝胶; 干燥所述复合凝胶; 并且热解所述复合凝胶以形成可湿性气凝胶/碳复合材料或可湿性干凝胶/碳复合材料,其中所述复合材料包含炭和所述内部增强材料,并且其中所述复合材料适合用作阳极, 在熔融盐电化学燃料电池中在500℃至800℃范围内燃烧以产生电能。 还提供了附加的方法和系统/组合物。
    • 9. 发明授权
    • Metal-oxide-based energetic materials and synthesis thereof
    • 基于金属氧化物的高能材料及其合成
    • US06986819B2
    • 2006-01-17
    • US10422488
    • 2003-04-24
    • Thomas M. TillotsonRandall L. SimpsonLawrence W. Hrubesh
    • Thomas M. TillotsonRandall L. SimpsonLawrence W. Hrubesh
    • D03D23/00
    • C06B21/0066C06B21/0091C06B45/00Y02P20/544
    • A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.
    • 已经发明了使用溶胶 - 凝胶化学制备高能金属氧化物基能量材料的方法。 湿化学溶胶 - 凝胶加工提高了安全性和性能。 本质上,金属氧化物氧化剂骨架结构由可水解金属(金属盐或金属醇盐)制备,其中在凝胶化之前加入到溶胶中的燃料或在孔隙金属氧化物凝胶基质内合成。 使用金属盐前体,质子清除剂用于使溶胶不稳定并诱导凝胶化。 使用金属醇盐前体标准公知的溶胶 - 凝胶水解和缩合反应。 通过标准溶胶 - 凝胶法进行干燥,通过缓慢蒸发在孔内的液体,产生高密度固体纳米复合物,或通过超临界萃取以产生较低密度的多孔纳米复合材料。 可以将其它成分加入该基本纳米结构以改变物理和化学性质,其包括反应期间粘合剂或气体发生器的有机成分,燃烧速率调节剂或光谱发射体。