会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Offline counterfactual analysis
    • 离线反事实分析
    • US08606608B2
    • 2013-12-10
    • US12972417
    • 2010-12-17
    • Leon BottouDenis CharlesDavid Maxwell ChickeringPatrice Simard
    • Leon BottouDenis CharlesDavid Maxwell ChickeringPatrice Simard
    • G06Q10/00
    • G06Q30/0243
    • Counterfactual analysis can be performed “offline”, or “after the fact”, based on data collected during a trial in which random variations are applied to the output of the system whose parameters are to be the subject of the counterfactual analysis. A weighting factor can be derived and applied to data collected during the trial to emphasize that data obtained when the random variations most closely resembled the output that would be expected if counterfactual parameters were utilized to generate the output. If the counterfactual parameters being considered differ too much from the parameters under which the trial was conducted, the offline counterfactual analysis can estimate a direction and magnitude of the change of the system performance, as opposed to deriving a specific expected system performance value. In economic transactions, the random variations can be considered variations in the price paid by another party, thereby enabling derivation of their marginal cost.
    • 反事实分析可以基于在试验期间收集的数据“离线”或“事后”进行,其中随机变量应用于其参数作为反事实分析的对象的系统的输出。 可以导出加权因子并将其应用于在试验期间收集的数据,以强调当随机变量最接近地类似于如果使用反事实参数来产生输出时将被预期的输出获得的数据。 如果所考虑的反事实参数与进行试验的参数有太大差异,那么脱机反事实分析可以估计系统性能变化的方向和幅度,而不是推导具体的预期系统性能值。 在经济交易中,随机变化可以被认为是另一方支付的价格变动,从而能够推算其边际成本。
    • 2. 发明申请
    • OFFLINE COUNTERFACTUAL ANALYSIS
    • 离线反应分析
    • US20120158488A1
    • 2012-06-21
    • US12972417
    • 2010-12-17
    • Leon BottouDenis CharlesDavid Maxwell ChickeringPatrice Simard
    • Leon BottouDenis CharlesDavid Maxwell ChickeringPatrice Simard
    • G06Q30/00G06F17/30
    • G06Q30/0243
    • Counterfactual analysis can be performed “offline”, or “after the fact”, based on data collected during a trial in which random variations are applied to the output of the system whose parameters are to be the subject of the counterfactual analysis. A weighting factor can be derived and applied to data collected during the trial to emphasize that data obtained when the random variations most closely resembled the output that would be expected if counterfactual parameters were utilized to generate the output. If the counterfactual parameters being considered differ too much from the parameters under which the trial was conducted, the offline counterfactual analysis can estimate a direction and magnitude of the change of the system performance, as opposed to deriving a specific expected system performance value. In economic transactions, the random variations can be considered variations in the price paid by another party, thereby enabling derivation of their marginal cost.
    • 反事实分析可以基于在试验期间收集的数据“离线”或“事后”进行,其中随机变量应用于其参数作为反事实分析的对象的系统的输出。 可以导出加权因子并将其应用于在试验期间收集的数据,以强调当随机变量最接近地类似于如果使用反事实参数来产生输出时将被预期的输出获得的数据。 如果所考虑的反事实参数与进行试验的参数有太大差异,那么脱机反事实分析可以估计系统性能变化的方向和幅度,而不是推导具体的预期系统性能值。 在经济交易中,随机变化可以被认为是另一方支付的价格变动,从而能够推算其边际成本。
    • 6. 发明授权
    • Speech recognition with mixtures of bayesian networks
    • 语音识别与贝叶斯网络的混合
    • US06336108B1
    • 2002-01-01
    • US09220197
    • 1998-12-23
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl HeckermanFileno A. AllevaMei-Yuh Hwang
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl HeckermanFileno A. AllevaMei-Yuh Hwang
    • G06F1518
    • G06K9/6296G06N5/025Y10S707/99945Y10S707/99948
    • The invention performs speech recognition using an array of mixtures of Bayesian networks. A mixture of Bayesian networks (MBN) consists of plural hypothesis-specific Bayesian networks (HSBNs) having possibly hidden and observed variables. A common external hidden variable is associated with the MBN, but is not included in any of the HSBNs. The number of HSBNs in the MBN corresponds to the number of states of the common external hidden variable, and each HSBN models the world under the hypothesis that the common external hidden variable is in a corresponding one of those states. In accordance with the invention, the MBNs encode the probabilities of observing the sets of acoustic observations given the utterance of a respective one of said parts of speech. Each of the HSBNs encodes the probabilities of observing the sets of acoustic observations given the utterance of a respective one of the parts of speech and given a hidden common variable being in a particular state. Each HSBN has nodes corresponding to the elements of the acoustic observations. These nodes store probability parameters corresponding to the probabilities with causal links representing dependencies between ones of said nodes.
    • 本发明使用贝叶斯网络混合的阵列来执行语音识别。 贝叶斯网络(MBN)的混合由多个具有隐藏和观察变量的假设特定贝叶斯网络(HSBN)组成。 常见的外部隐藏变量与MBN相关联,但不包括在任何HSBN中。 MBN中的HSBN的数量对应于共同外部隐藏变量的状态数,并且每个HSBN在假设下共同的外部隐藏变量处于相应的一个状态的假设下对世界进行建模。 根据本发明,MBN编码了考虑到所述话音部分中的相应一个的话语来观察声学观测组的概率。 每个HSBN编码观察给定语音相应的一个语音的发音并给出隐藏的公共变量处于特定状态的声学观察组的概率。 每个HSBN具有对应于声学观测元素的节点。 这些节点存储对应于概率的概率参数,其中因果链接表示所述节点之间的依赖关系。