会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • IMAGE QUALITY CONTROL IN DYNAMIC CONTRAST ENHANCED MAGNETIC RESONANCE IMAGING
    • WO2018096006A1
    • 2018-05-31
    • PCT/EP2017/080135
    • 2017-11-23
    • KONINKLIJKE PHILIPS N.V.
    • KEUPP, JochenMEINEKE, Jan, JakobSOMMER, Karsten
    • G01R33/50G01R33/54G01R33/56
    • The invention provides for a magnetic resonance imaging system (100) comprising a memory (134) for storing machine executable instructions (140) and pulse sequence commands (142). The pulse sequence commands are configured for controlling the magnetic resonance imaging system according to a DCE Magnetic Resonance Imaging protocol. The magnetic resonance imaging system further comprises a user interface (200) and a processor (130) for controlling the magnetic resonance imaging system. Execution of the machine executable instructions causes the processor to: control (500) the magnetic resonance imaging system using the pulse sequence commands to acquire calibration magnetic resonance data (144) two or more times for varying flip angles; reconstruct (502) each acquisition of the calibration magnetic resonance data into a calibration image (146) to create a set of variable flip angle images (148); calculate (504) a T1 mapping (150) using the set of variable flip angle images; calculate (506) a contrast agent calibration (152) for a predetermined magnetic resonance imaging contrast agent using at least partially the T1 mapping; calculate (508) an estimated calibration error (154) that is descriptive of an estimated error in the contrast agent calibration and/or the T1 mapping using a calibration accuracy model, wherein the calibration accuracy model is configured for calculating the estimated calibration error using the set of variable flip angle images; and display (510) a calibration warning message (202) on the user interface if the estimated calibration error is outside of a predetermined calibration error range.
    • 3. 发明申请
    • DIRECT MEASUREMENT OF THE B0-OFF-RESONANCE FIELD DURING MAGNETIC RESONANCE FINGERPRINTING
    • 磁共振指纹图谱中B0非共振场的直接测量
    • WO2018065233A1
    • 2018-04-12
    • PCT/EP2017/073974
    • 2017-09-22
    • KONINKLIJKE PHILIPS N.V.
    • MEINEKE, Jan, JakobAMTHOR, Thomas, ErikKOKEN, PeterSOMMER, Karsten
    • G01R33/24G01R33/44G01R33/56G01R33/50
    • G01R33/443G01R33/243G01R33/246G01R33/50G01R33/5608
    • The invention provides for a magnetic resonance imaging system (100). Machine executable instructions cause a processor controlling the MRI system to control (200) the magnetic resonance imaging system with the pulse sequence commands to acquire the magnetic resonance data. The pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire the magnetic resonance data according to a magnetic resonance fingerprinting protocol. The pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire the magnetic resonance data during multiple pulse repetitions (302). The pulse sequence commands are configured for controlling the magnetic resonance imaging system to cause gradient induced spin rephasing at least twice during each of the multiple pulse repetitions using a gradient magnetic field generating system (110, 112). The pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire at least two magnetic resonance signals during each of the multiple pulse repetitions. Each of the at least two magnetic resonance signals is measured during a separate one of the gradient induced spin rephasing. The magnetic resonance data comprises the at least two magnetic resonance signals acquired during each of the multiple pulse repetitions. Execution of the machine executable instructions further cause the processor to calculate (202) a B0-off-resonance map (158) using the magnetic resonance data, wherein the B0-off-resonance map is descriptive of a B0-off-resonance magnetic field of the magnetic resonance imaging system when the subject is within the imaging zone, wherein the B0-off-resonance map is at least partially calculated using at least two magnetic resonance signals measured during a single pulse repetition. Execution of the machine executable instructions further cause the processor to generate (204) at least one magnetic resonance parametric map by comparing the magnetic resonance data with a magnetic resonance fingerprinting dictionary (152).
    • 本发明提供了一种磁共振成像系统(100)。 机器可执行指令使控制MRI系统的处理器利用脉冲序列命令来控制(200)磁共振成像系统以获取磁共振数据。 脉冲序列命令被配置用于控制磁共振成像系统以根据磁共振指纹识别协议来采集磁共振数据。 脉冲序列命令被配置用于控制磁共振成像系统以在多次脉冲重复期间采集磁共振数据(302)。 脉冲序列命令被配置为使用梯度磁场生成系统(110,112)控制磁共振成像系统以在多个脉冲重复中的每一个期间至少两次引起梯度感应自旋重相移。 脉冲序列命令被配置用于控制磁共振成像系统以在多个脉冲重复中的每个脉冲重复期间获取至少两个磁共振信号。 至少两个磁共振信号中的每一个在梯度引起的自旋重相位中的单独的一个期间被测量。 磁共振数据包括在多个脉冲重复中的每个脉冲重复期间获取的至少两个磁共振信号。 机器可执行指令的执行还使处理器使用磁共振数据计算(202)B0非共振图(158),其中B0非共振图描述B0非共振磁场 当所述对象位于所述成像区内时,所述磁共振成像系统的所述B 0非共振图是至少部分地使用在单个脉冲重复期间测量的至少两个磁共振信号来计算的。 机器可执行指令的执行还使得处理器通过将磁共振数据与磁共振指纹字典(152)进行比较来生成(204)至少一个磁共振参数图。
    • 4. 发明申请
    • SUSCEPTIBILITY MAPPING OF A MOVING SUBJECT
    • 移动主体的敏感性映射
    • WO2017157872A1
    • 2017-09-21
    • PCT/EP2017/055884
    • 2017-03-14
    • KONINKLIJKE PHILIPS N.V.
    • KATSCHER, UlrichMEINEKE, Jan, Jakob
    • G01R33/44G01R33/565G01R33/24
    • G01R33/563G01R33/243G01R33/443G01R33/56509G01R33/56536G06T7/20G06T7/70G06T11/006G06T2207/10088
    • The invention relates to a magnetic resonance imaging system (10), the system comprising a magnetic resonance imaging device (12) for acquiring data from a moving subject (14), especially a fetus or a part of said fetus; and an image generator (30) for generating an image of said moving subject (14), wherein the magnetic resonance imaging device (12) is configured to acquire the data from the subject (14) at different positions of said subject (14) with respect to a magnetization direction B 0 , utilizing the movement of the subject (14); and wherein the image generator (30) is configured to - determine the position and/or orientation of said subject (14) during the respective data acquisition; - reconstruct phase images from the acquired data; and - generate a susceptibility map based on the reconstructed phase images. The invention further relates to a corresponding method for generating an image of the subject (14).
    • 本发明涉及一种磁共振成像系统(10),该系统包括磁共振成像设备(12),用于从运动对象(14)获取数据,特别是胎儿或其一部分 说胎儿; 和用于生成所述运动对象(14)的图像的图像生成器(30),其中,所述磁共振成像设备(12)被配置为在所述对象(14)的不同位置处从所述对象(14) 利用被摄体(14)的移动来关于磁化方向B 0; 并且其中所述图像生成器(30)被配置为 - 在相应的数据采集期间确定所述对象(14)的位置和/或方位; - 从采集的数据重建相位图像; 以及 - 基于重建的相位图像生成磁化率图。 本发明还涉及用于生成对象(14)的图像的对应方法。
    • 7. 发明申请
    • MAGNETIC RESONANCE FINGERPRINTING IN FOURIER SPACE
    • WO2019007993A1
    • 2019-01-10
    • PCT/EP2018/068006
    • 2018-07-03
    • KONINKLIJKE PHILIPS N.V.
    • SOMMER, KarstenAMTHOR, Thomas, ErikMEINEKE, Jan, JakobKOKEN, PeterDONEVA, Mariya, Ivanova
    • G01R33/50G01R33/56G01R33/561A61B5/00A61B5/055G01R33/565
    • The invention relates to a magnetic resonance imaging system (100, 400) comprising a memory (134) for storing machine executable instructions (140) and MRF pulse sequence commands (142). The MRF pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire MRF magnetic resonance data (144) according to a magnetic resonance fingerprinting protocol. The memory further contains a Fourier transformed magnetic resonance finger printing dictionary (150). The Fourier transformed magnetic resonance finger printing dictionary comprises entries for at least one intrinsic property (152). The magnetic resonance imaging system further comprises a processor (130) for controlling the magnetic resonance imaging system. Execution of the machine executable instructions causes the processor to: acquire (200) MRF magnetic resonance data (144) descriptive of a region of interest (109) by controlling the magnetic resonance imaging system with the MRF pulse sequence commands, wherein the region of interest is divided into voxels; construct (202) an MRF signal (146) for each of the voxels using the MRF magnetic resonance data; construct (204) a Fourier transformed MRF signal (148) by Fourier transforming the MRF signal for each of the voxels; and determine (206) the least one intrinsic property for each of the voxels using the Fourier transformed MRF signal and the Fourier transformed magnetic resonance finger printing dictionary. The Fourier transformed MRF signal is truncated to a predetermined number of terms before determining the at least one intrinsic property.