会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD FOR ENHANCING THE RESOLVING POWER OF ION MOBILITY SEPARATIONS OVER A LIMITED MOBILITY RANGE
    • 提高移动能力分离功能的方法,有限的移动范围
    • US20130299690A1
    • 2013-11-14
    • US13861511
    • 2013-04-12
    • Alexandre A. ShvartsburgKeqi TangRichard D. Smith
    • Alexandre A. ShvartsburgKeqi TangRichard D. Smith
    • H01J49/00
    • H01J49/0031G01N27/622
    • A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.
    • 公开了提高常规离子迁移光谱法的分辨能力,特异性和峰值能力的方法。 离子在包括振荡场波和相对静电场的动态电场中分离,或至少两个具有不同参数(幅度,分布,频率或速度)的反向传播波。 由于平均漂移速度对波和静电场或不相等波的离子迁移率的功能依赖性不同,只有单个物质平衡,而其他物质在任一方向上漂移并且是迁移率分离的。 然后通过在充满气体的外壳内的固定距离测量离子漂移时间来获得在有限范围内的离子迁移谱。 在平衡迁移附近的分辨能力基本上超过已知的行波或漂移管IMS分离的分辨能力,其中可以通过缝合多个段获得更宽范围的光谱。 该方法还可实现低截止,高截止和带通离子迁移率滤波器。
    • 3. 发明授权
    • Device for two-dimensional gas-phase separation and characterization of ion mixtures
    • 用于二维气相分离和表征离子混合物的装置
    • US07148474B2
    • 2006-12-12
    • US11103984
    • 2005-04-11
    • Keqi TangAlexandre A. ShvartsburgRichard D. Smith
    • Keqi TangAlexandre A. ShvartsburgRichard D. Smith
    • H01J49/40H01J49/26B01D59/44
    • G01N27/624H01J49/004
    • The present invention relates to a device for separation and characterization of gas-phase ions. The device incorporates an ion source, a field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer, an ion mobility spectrometry (IMS) drift tube, and an ion detector. In one aspect of the invention, FAIMS operating voltages are electrically floated on top of the IMS drift voltage. In the other aspect, the FAIMS/IMS interface is implemented employing an electrodynamic ion funnel, including in particular an hourglass ion funnel. The present invention improves the efficiency (peak capacity) and sensitivity of gas-phase separations; the online FAIMS/IMS coupling creates a fundamentally novel two-dimensional gas-phase separation technology with high peak capacity, specificity, and exceptional throughput.
    • 本发明涉及气相离子的分离和表征装置。 该装置包括离子源,场非对称波形离子迁移谱(FAIMS)分析仪,离子迁移谱(IMS)漂移管和离子检测器。 在本发明的一个方面,FAIMS工作电压在IMS漂移电压的顶部被浮动。 另一方面,使用电动离子漏斗实现FAIMS / IMS接口,特别包括沙漏离子漏斗。 本发明提高气相分离的效率(峰值容量)和灵敏度; 在线FAIMS / IMS耦合产生了具有高峰值容量,特异性和卓越吞吐量的基本上新颖的二维气相分离技术。
    • 4. 发明授权
    • Method for enhancing the resolving power of ion mobility separations over a limited mobility range
    • 在有限的迁移率范围内提高离子迁移率分离的分辨能力的方法
    • US08841608B2
    • 2014-09-23
    • US13861511
    • 2013-04-12
    • Alexandre A. ShvartsburgKeqi TangRichard D. Smith
    • Alexandre A. ShvartsburgKeqi TangRichard D. Smith
    • G01N27/62H01J49/00
    • H01J49/0031G01N27/622
    • A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.
    • 公开了提高常规离子迁移光谱法的分辨能力,特异性和峰值能力的方法。 离子在包括振荡场波和相对静电场的动态电场中分离,或至少两个具有不同参数(幅度,分布,频率或速度)的反向传播波。 由于平均漂移速度对波和静电场或不相等波的离子迁移率的功能依赖性不同,只有单个物质平衡,而其他物质在任一方向上漂移并且是迁移率分离的。 然后通过在充满气体的外壳内的固定距离测量离子漂移时间来获得在有限范围内的离子迁移谱。 在平衡迁移附近的分辨能力基本上超过已知的行波或漂移管IMS分离的分辨能力,其中可以通过缝合多个段获得更宽范围的光谱。 该方法还可实现低截止,高截止和带通离子迁移率滤波器。
    • 5. 发明申请
    • HOOKED DIFFERENTIAL MOBILITY SPECTROMETRY APPARATUS AND METHOD THEREFORE
    • 预期的差分移动光谱仪器和方法
    • US20080156978A1
    • 2008-07-03
    • US11617889
    • 2006-12-29
    • Alexandre A. ShvartsburgKeqi TangYehia M. IbrahimRichard D. Smith
    • Alexandre A. ShvartsburgKeqi TangYehia M. IbrahimRichard D. Smith
    • H01J49/06
    • H01J49/004G01N27/624
    • Disclosed are a device and method for improved interfacing of differential mobility spectrometry (DMS) or field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of substantially planar geometry to subsequent or preceding instrument stages. Interfacing is achieved using curved DMS elements, where a thick ion beam emitted by planar DMS analyzers or injected into them for ion filtering is compressed to the gap median by DMS ion focusing effect in a spatially inhomogeneous electric field. Resulting thinner beams are more effectively transmitted through necessarily constrained conductance limit apertures to subsequent instrument stages operated at a pressure lower than DMS, and/or more effectively injected into planar DMS analyzers. The technology is synergetic with slit apertures, slit aperture/ion funnels, and high-pressure ion funnel interfaces known in the art which allow for increasing cross-sectional area of MS inlets. The invention may be used in integrated analytical platforms, including, e.g., DMS/MS, LC/DMS/MS, and DMS/IMS/MS that could replace and/or enhance current LC/MS methods, e.g., for proteomics research.
    • 公开了一种用于改进基本平面几何形状的差分迁移率谱(DMS)或场非对称波形离子迁移谱(FAIMS)分析仪与随后或之前仪器级的接口的装置和方法。 使用弯曲的DMS元件实现接合,其中通过平面DMS分析仪发射或注入其中以进行离子过滤的厚离子束通过在空间不均匀电场中的DMS离子聚焦效应被压缩到间隙中间值。 所产生的较薄的梁更有效地通过必须约束的电导极限孔传输到在低于DMS的压力下操作的后续仪器级,和/或更有效地注入到平面DMS分析仪中。 该技术与本领域已知的狭缝孔,狭缝孔/离子漏斗和高压离子漏斗接口协同,允许增加MS入口的横截面面积。 本发明可以用于综合分析平台,包括例如DMS / MS,LC / DMS / MS和DMS / IMS / MS,其可以替代和/或增强当前的LC / MS方法,例如蛋白质组学研究。
    • 6. 发明授权
    • High performance ion mobility spectrometry using hourglass electrodynamic funnel and internal ion funnel
    • 使用沙漏电动力学漏斗和内部离子漏斗的高性能离子迁移谱
    • US06818890B1
    • 2004-11-16
    • US10699006
    • 2003-10-30
    • Richard D. SmithKeqi TangAlexandre A. Shvartsburg
    • Richard D. SmithKeqi TangAlexandre A. Shvartsburg
    • H01J4904
    • H01J49/066
    • A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.
    • 一种在离子迁移光谱/质谱仪器中能够提高灵敏度的方法和装置,其基本上减少或消除离子迁移谱仪漂移管中的离子损失,所述漂移管利用在漂移管入口处的沙漏电动力离子漏斗和/或内部离子漏斗 在漂移管的出口处。 沙漏电动漏斗由至少一个入口元件,中心元件和出口元件形成,其中中心元件的孔径小于入口元件的孔径和出口元件的孔径。 在沙漏电动漏斗的外部由离子源在较高压力区域产生的离子通过电导限制孔传输到沙漏漏斗入口处的相对低压区域。 将交替和直接的电势施加到沙漏电动力学漏斗的元件,从而将离子吸入和穿过沙漏电动力学漏斗,从而将相对大量的离子引入漂移管中,同时保持气体压力和组成在漂移管的内部 与电动漏斗的入口处的那些不同,并且如果需要,允许在漂移管内保持正的气体压力。 内部离子漏斗设置在漂移管内并位于所述漂移管的出口处。 内部离子漏斗的优点是离散在漂移管内的出口孔的离子,例如通常在常规漂移管中丢失到任何后续分析或测量中的离子,而是通过漂移出口 管,大大增加离开漂移管的离子的量。
    • 7. 发明授权
    • Hooked differential mobility spectrometry apparatus and method therefore
    • 钩式差速移动光谱仪器及方法
    • US07491930B2
    • 2009-02-17
    • US11617889
    • 2006-12-29
    • Alexandre A. ShvartsburgKeqi TangYehia M. IbrahimRichard D. Smith
    • Alexandre A. ShvartsburgKeqi TangYehia M. IbrahimRichard D. Smith
    • H01J49/06H01J49/26B01D59/44
    • H01J49/004G01N27/624
    • Disclosed are a device and method for improved interfacing of differential mobility spectrometry (DMS) or field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of substantially planar geometry to subsequent or preceding instrument stages. Interfacing is achieved using curved DMS elements, where a thick ion beam emitted by planar DMS analyzers or injected into them for ion filtering is compressed to the gap median by DMS ion focusing effect in a spatially inhomogeneous electric field. Resulting thinner beams are more effectively transmitted through necessarily constrained conductance limit apertures to subsequent instrument stages operated at a pressure lower than DMS, and/or more effectively injected into planar DMS analyzers. The technology is synergetic with slit apertures, slit aperture/ion funnels, and high-pressure ion funnel interfaces known in the art which allow for increasing cross-sectional area of MS inlets. The invention may be used in integrated analytical platforms, including, e.g., DMS/MS, LC/DMS/MS, and DMS/IMS/MS that could replace and/or enhance current LC/MS methods, e.g., for proteomics research.
    • 公开了一种用于改进基本平面几何形状的差分迁移率谱(DMS)或场非对称波形离子迁移谱(FAIMS)分析仪与随后或之前仪器级的接口的装置和方法。 使用弯曲的DMS元件实现接合,其中通过平面DMS分析仪发射或注入其中以进行离子过滤的厚离子束通过在空间不均匀电场中的DMS离子聚焦效应被压缩到间隙中间值。 所产生的较薄的梁更有效地通过必须约束的电导极限孔传输到在低于DMS的压力下操作的后续仪器级,和/或更有效地注入到平面DMS分析仪中。 该技术与本领域已知的狭缝孔,狭缝孔/离子漏斗和高压离子漏斗接口协同,允许增加MS入口的横截面面积。 本发明可以用于综合分析平台,包括例如DMS / MS,LC / DMS / MS和DMS / IMS / MS,其可以替代和/或增强当前的LC / MS方法,例如蛋白质组学研究。
    • 8. 发明授权
    • Platform for field asymmetric waveform ion mobility spectrometry with ion propulsion modes employing gas flow and electric field
    • 具有采用气流和电场的离子推进模式的场非对称波形离子迁移谱的平台
    • US08263930B2
    • 2012-09-11
    • US12690818
    • 2010-01-20
    • Keqi TangAlexandre A. ShvartsburgRichard D. Smith
    • Keqi TangAlexandre A. ShvartsburgRichard D. Smith
    • H01J49/40
    • G01N27/624
    • A differential ion mobility spectrometry or field asymmetric waveform ion mobility spectrometry (FAIMS) platform is disclosed that utilizes both gas flow and electric field, consecutively or simultaneously, to move ions through the analytical gap. The consecutive combination of flow and field enables rapid and flexible switching of the FAIMS stage “on” (for ion separation) and “off” (for high non-selective transmission) with no hardware modifications. This capability is needed for effective use of multidimensional instrument systems that couple FAIMS to mass spectrometry and/or conventional ion mobility spectrometry. The joint application of flow and field allows controlling the discrimination against high-mobility ions, maximizing it to remove the chemical noise or minimizing it to make the analyses of complex samples more predictable and uniform.
    • 公开了差分离子迁移谱或场非对称波形离子迁移谱(FAIMS)平台,其利用气流和电场连续或同时地将离子移动通过分析间隙。 流程和现场的连续组合使得无需硬件修改即可快速灵活地切换FAIMS阶段(离子分离)和“关闭”(用于高非选择性传输)。 需要这种能力来有效利用将FAIMS耦合到质谱和/或常规离子迁移谱的多维仪器系统。 流量和场的联合应用允许控制对高迁移率离子的鉴别,使其最大化以消除化学噪声或使其最小化,使得复杂样品的分析更可预测和均匀。
    • 9. 发明授权
    • Method and apparatus for ion mobility spectrometry with alignment of dipole direction (IMS-ADD)
    • 用于偶极方向对准的离子迁移光谱法的方法和装置(IMS-ADD)
    • US07170053B2
    • 2007-01-30
    • US11097855
    • 2005-03-31
    • Alexandre A. ShvartsburgKeqi TangRichard D. Smith
    • Alexandre A. ShvartsburgKeqi TangRichard D. Smith
    • H01J49/40
    • G01N27/624H01J49/004H01J49/40
    • Techniques and instrumentation are described for analyses of substances, including complex samples/mixtures that require separation prior to characterization of individual components. A method is disclosed for separation of ion mixtures and identification of ions, including protein and other macromolecular ions and their different structural isomers. Analyte ions are not free to rotate during the separation, but are substantially oriented with respect to the drift direction. Alignment is achieved by applying, at a particular angle to the drift field, a much stronger alternating electric field that “locks” the ion dipoles with moments exceeding a certain value. That value depends on the buffer gas composition, pressure, and temperature, but may be as low as ˜3 Debye under certain conditions. The presently disclosed method measures the direction-specific cross-sections that provide the structural information complementing that obtained from known methods, and, when coupled to those methods, increases the total peak capacity and specificity of gas-phase separations. Simultaneous 2-D separations by direction-specific cross sections along and orthogonally to the ion dipole direction are also possible.
    • 描述了用于分析物质的技术和仪器,包括在表征单个组分之前需要分离的复杂样品/混合物。 公开了用于分离离子混合物和鉴定离子的方法,包括蛋白质和其它大分子离子及其不同的结构异构体。 分离离子在分离期间不能自由旋转,而是基本上相对于漂移方向取向。 通过以特定的角度对漂移场施加更强的交变电场来实现对准,所述交变电场通过超过一定值的力矩“锁定”离子偶极子。 该值取决于缓冲气体组成,压力和温度,但在某些条件下可能低至〜3德拜。 目前公开的方法测量提供与已知方法获得的结构信息互补的方向特异性横截面,并且当与这些方法耦合时,增加气相分离的总峰容量和特异性。 沿垂直于离子偶极方向的方向特定横截面同时进行2-D分离也是可能的。
    • 10. 发明授权
    • High performance ion mobility spectrometry using hourglass electrodynamic funnel and internal ion funnel
    • US06967325B2
    • 2005-11-22
    • US10933661
    • 2004-09-02
    • Richard D. SmithKeqi TangAlexandre A. Shvartsburg
    • Richard D. SmithKeqi TangAlexandre A. Shvartsburg
    • G01N27/64H01J49/02H01J49/04H01J49/06H01J49/16H01J49/40H01J49/42
    • H01J49/066G01N27/622H01J49/40
    • A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing a device for transmitting ions from an ion source which allows the transmission of ions without significant delay to an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.