会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for forming AlGaN crystal layer
    • 形成AlGaN晶体层的方法
    • US07632741B2
    • 2009-12-15
    • US12051138
    • 2008-03-19
    • Kei KosakaShigeaki SumiyaTomohiko Shibata
    • Kei KosakaShigeaki SumiyaTomohiko Shibata
    • H01L21/20H01L21/36
    • H01L21/0262H01L21/0237H01L21/0242H01L21/02458H01L21/02502H01L21/0254
    • There is provided a method for preparing an AlGaN crystal layer having an excellent surface flatness. A buffer layer effective in stress relaxation is formed on a template substrate having a surface layer that is flat at a substantially atomic level and to which in-plane compressive stress is applied, and an AlGaN layer is formed on the buffer layer, so that an AlGaN layer can be formed that is flat at a substantially atomic level. Particularly when the surface layer of the template substrate includes a first AlN layer, a second AlN layer may be formed thereon at a temperature of 600° C. or lower, while a mixed gas of TMA and TMG is supplied in a TMG/TMA mixing ratio of 3/17 or more to 6/17 or less, so that a buffer layer effective in stress relaxation the can be formed in a preferred manner.
    • 提供了具有优异的表面平坦度的制备AlGaN晶体层的方法。 在具有表面层的模板基板上形成有效应力松弛的缓冲层,该表面层基本上是原子水平的平面并且施加面内的压缩应力,并且在缓冲层上形成AlGaN层, AlGaN层可以形成为基本上原子水平的平坦。 特别是当模板衬底的表面层包括第一AlN层时,可以在600℃或更低的温度下在其上形成第二AlN层,而在TMG / TMA混合中提供TMA和TMG的混合气体 比例为3/17以上至6/17以下,可以优选形成有效应力松弛的缓冲层。
    • 2. 发明申请
    • METHOD FOR FORMING AlGaN CRYSTAL LAYER
    • 形成AlGaN晶体层的方法
    • US20080242060A1
    • 2008-10-02
    • US12051168
    • 2008-03-19
    • Kei KosakaShigeaki SumiyaTomohiko Shibata
    • Kei KosakaShigeaki SumiyaTomohiko Shibata
    • H01L21/20
    • H01L21/0262H01L21/0237H01L21/0242H01L21/02458H01L21/02505H01L21/02507H01L21/0254
    • A method for preparing an AlGaN crystal layer with good surface flatness is provided. A surface layer of AlN is epitaxially formed on a c-plane sapphire single crystal base material by MOCVD method, and the resulting laminated body is then heated at a temperature of 1300° C. or higher so that a template substrate applying in-plane compressive stress and having a surface layer flat at a substantially atomic level is obtained. An AlGaN layer is formed on the template substrate at a deposition temperature higher than 1000° C. by an MOCVD method that includes depositing alternating layers of a first unit layer including a Group III nitride represented by the composition formula AlxGa1-xN (0≦x≦1) and a second unit layer including a Group III nitride represented by the composition formula AlyGa1-yN (0≦y≦1 and y≠x) such that the AlGaN layer has a superlattice structure.
    • 提供了一种制备具有良好表面平坦度的AlGaN晶体层的方法。 通过MOCVD法在C面蓝宝石单晶基材上外延形成AlN的表面层,然后在1300℃以上的温度下加热所得到的层叠体,使得在基板上施加面内压缩 获得了基本原子水平的表面层平坦的应力。 通过MOCVD方法在模板基板上以高于1000℃的沉积温度在模板基板上形成AlGaN层,该方法包括:沉积包含由组成式Al x x表示的III族氮化物的第一单元层的交替层, (0≤x≤1)的第一单元层和由组成式Al Y y表示的III族氮化物的第二单位层 1-y N(0 <= y <= 1和y
    • 3. 发明申请
    • METHOD FOR FORMING AlGaN CRYSTAL LAYER
    • 形成AlGaN晶体层的方法
    • US20080233721A1
    • 2008-09-25
    • US12051138
    • 2008-03-19
    • Kei KosakaShigeaki SumiyaTomohiko Shibata
    • Kei KosakaShigeaki SumiyaTomohiko Shibata
    • H01L21/205
    • H01L21/0262H01L21/0237H01L21/0242H01L21/02458H01L21/02502H01L21/0254
    • There is provided a method for preparing an AlGaN crystal layer having an excellent surface flatness. A buffer layer effective in stress relaxation is formed on a template substrate having a surface layer that is flat at a substantially atomic level and to which in-plane compressive stress is applied, and an AlGaN layer is formed on the buffer layer, so that an AlGaN layer can be formed that is flat at a substantially atomic level. Particularly when the surface layer of the template substrate includes a first AlN layer, a second AlN layer may be formed thereon at a temperature of 600° C. or lower, while a mixed gas of TMA and TMG is supplied in a TMG/TMA mixing ratio of 3/17 or more to 6/17 or less, so that a buffer layer effective in stress relaxation the can be formed in a preferred manner.
    • 提供了具有优异的表面平坦度的制备AlGaN晶体层的方法。 在具有表面层的模板基板上形成有效应力松弛的缓冲层,该表面层基本上是原子水平的平面并且施加面内的压缩应力,并且在缓冲层上形成AlGaN层, AlGaN层可以形成为基本上原子水平的平坦。 特别是当模板衬底的表面层包括第一AlN层时,可以在600℃或更低的温度下在其上形成第二AlN层,而在TMG / TMA混合中提供TMA和TMG的混合气体 比例为3/17以上至6/17以下,可以优选形成有效应力松弛的缓冲层。
    • 4. 发明授权
    • Method for forming AlGaN crystal layer
    • 形成AlGaN晶体层的方法
    • US07713847B2
    • 2010-05-11
    • US12051168
    • 2008-03-19
    • Kei KosakaShigeaki SumiyaTomohiko Shibata
    • Kei KosakaShigeaki SumiyaTomohiko Shibata
    • H01L21/20H01L21/36
    • H01L21/0262H01L21/0237H01L21/0242H01L21/02458H01L21/02505H01L21/02507H01L21/0254
    • A method for preparing an AlGaN crystal layer with good surface flatness is provided. A surface layer of AlN is epitaxially formed on a c-plane sapphire single crystal base material by MOCVD method, and the resulting laminated body is then heated at a temperature of 1300° C. or higher so that a template substrate applying in-plane compressive stress and having a surface layer flat at a substantially atomic level is obtained. An AlGaN layer is formed on the template substrate at a deposition temperature higher than 1000° C. by an MOCVD method that includes depositing alternating layers of a first unit layer including a Group III nitride represented by the composition formula AlxGa1-xN (0≦x≦1) and a second unit layer including a Group III nitride represented by the composition formula AlyGa1-yN (0≦y≦1 and y≠x) such that the AlGaN layer has a superlattice structure.
    • 提供了一种制备具有良好表面平坦度的AlGaN晶体层的方法。 通过MOCVD法在C面蓝宝石单晶基材上外延形成AlN的表面层,然后在1300℃以上的温度下加热所得到的层叠体,使得在基板上施加面内压缩 获得了基本原子水平的表面层平坦的应力。 通过MOCVD方法在模板基板上以高于1000℃的沉积温度在模板基板上形成AlGaN层,该方法包括沉积包含由组成式Al x Ga 1-x N(0&nl E; x&nlE)表示的III族氮化物的第一单元层的交替层 ; 1)和包含由组成式AlyGa1-yN(0&amp; nlE; y&nlE; 1和y≠x)表示的III族氮化物的第二单元层,使得AlGaN层具有超晶格结构。
    • 6. 发明申请
    • GAS CONCENTRATION DETECTION SENSOR
    • 气体浓度检测传感器
    • US20110283775A1
    • 2011-11-24
    • US13109352
    • 2011-05-17
    • Takayuki SekiyaKei KosakaShodai Hirata
    • Takayuki SekiyaKei KosakaShodai Hirata
    • G01N33/00
    • G01N27/4077
    • First outer gas apertures 144a are arranged in a first corner 144b such that the outer opening plane of each first outer gas aperture 144a forms an angle of 45 degrees with a bottom face of a step element 145 and the outer opening plane forms an angle of 90 degrees with an inner circumferential face of the first outer gas aperture 144a. Second outer gas apertures are arranged in a second corner 146b such that the outer opening plane of each second outer gas aperture 146a forms an angle of 45 degrees with a bottom face of an edge section 146 and the outer opening plane forms an angle of 90 degrees with an inner circumferential face of the second outer gas aperture 146a. This structure prevents water from adhering to a sensor element 110 and thereby enhances the response of a gas sensor 110.
    • 第一外部气体孔144a布置在第一角144b中,使得每个第一外部气体孔144a的外部开口面与台阶元件145的底面形成45度的角度,并且外部开口平面形成90度的角度 具有第一外部气体孔径144a的内圆周面。 第二外部气体孔布置在第二角部146b中,使得每个第二外部气体孔146a的外部开口平面与边缘部分146的底面形成45度的角度,并且外部开口平面形成90度的角度 具有第二外部气体孔146a的内周面。 这种结构防止水粘附到传感器元件110,从而增强气体传感器110的响应。
    • 7. 发明申请
    • Gas concentration detection sensor
    • 气体浓度检测传感器
    • US20110126610A1
    • 2011-06-02
    • US12927886
    • 2010-11-29
    • Takayuki SekiyaKei KosakaSang Jae Lee
    • Takayuki SekiyaKei KosakaSang Jae Lee
    • G01N25/00
    • G01N27/4077
    • A flow path from outer gas introduction apertures 144a to inner gas introduction apertures 134a has a narrower-width flow passage formed by an inner wall member 150. This structure effectively lowers the probability that a liquid, such as water, entering from the outer gas introduction apertures 144a passes through a gas inflow chamber 122 and reaches a sensor element 110, compared with a structure without the inner wall member 150. The inner wall member 150 is formed as a solid member that is capable of storing the surrounding heat. Even if there is a certain event that has the potential of causing a temperature decrease of the sensor element 110, for example, an abrupt change in flow rate of an object gas, the heat stored in the inner wall member 150 effectively prevents a temperature decrease of the sensor element 110. This structure prevents the occurrence of cracking in the sensor element 110, compared with a conventional sensor structure having a double-layered protective cover.
    • 从外部气体引入孔144a到内部气体导入孔134a的流路具有由内壁构件150形成的较窄宽度的流路。该结构有效地降低了从外部气体导入口 与没有内壁构件150的结构相比,孔144a穿过气体流入室122并到达传感器元件110.内壁构件150形成为能够存储周围热量的实心构件。 即使存在导致传感器元件110的温度降低的可能性的某些事件,例如,目标气体的流量的突然变化,存储在内壁部件150中的热也有效地防止了温度降低 与具有双层保护罩的常规传感器结构相比,该结构防止了传感器元件110中的裂纹的发生。