会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • X-ray tube of the rotary anode type
    • 旋转阳极型X射线管
    • US5384818A
    • 1995-01-24
    • US44174
    • 1993-04-08
    • Katsuhiro OnoHidero AnnoTakayuki KitamiHiroyuki SugiuraMakoto Tanaka
    • Katsuhiro OnoHidero AnnoTakayuki KitamiHiroyuki SugiuraMakoto Tanaka
    • H01J35/10
    • H01J35/101H01J2235/106H01J2235/167
    • An X-ray tube of the rotary anode type includes a rotary structure to which an anode target is fixed, a stationary structure fitted into the rotating member, slide bearings arranged between them and provided with spiral grooves, and a lubricant consisting of gallium alloy and supplied to the slide bearings. The rotary structure includes a first rotating member to which the anode target is connected and a second rotating member provided with the bearings. These first and second rotating members are kept coaxial to each other and connected together at their those portions which are remote from the anode target when viewed in the rotating axis direction of the target and along a heat transmitting line extending from the target to the bearings, but heat insulating clearances and are formed between the rotating members at their other portions not connected. The first rotating member is made of one of those materials which have a heat conductivity smaller than 0.1 (cal/cm.sec..degree.C.) at temperature range of 0.degree. to 500.degree. C. The second rotating member is made of alloy whose main components are iron and nickel, alloy whose main components are iron, nickel and cobalt, alloy whose main components are iron and chromium, alloy whose main components are iron, chromium and nickel, or iron alloy including iron, chromium and one of carbon, molybdenum and tungsten.
    • 旋转阳极型的X射线管包括固定有阳极靶的旋转结构体,嵌入旋转部件的固定结构体,配置在其间的滑动轴承,设有螺旋状的槽,以及由镓合金和 提供给滑动轴承。 旋转结构包括连接阳极靶的第一旋转构件和设置有轴承的第二旋转构件。 这些第一旋转构件和第二旋转构件保持彼此同轴并且在从目标的旋转轴线方向观察时沿着远离阳极靶的那些部分并且沿着从靶向轴承延伸的传热线连接在一起, 但是隔热间隙形成在旋转构件之间的未连接的其它部分。 第一旋转构件由0〜500℃的导热率小于0.1(cal / cm·sec·℃)的材料之一构成。第二旋转构件由合金制成 主要成分为铁和镍,主要成分为铁,镍,钴的合金,主要成分为铁和铬的合金,主要成分为铁,铬,镍的合金,或含铁,铬和碳之一的铁合金, 钼和钨。
    • 4. 发明申请
    • Switched Reluctance Motor and Switched Reluctance Motor Drive System
    • 开关磁阻电机和开关磁阻电机驱动系统
    • US20130342039A1
    • 2013-12-26
    • US13529620
    • 2012-06-21
    • Takashi UMEMORIMakoto Tanaka
    • Takashi UMEMORIMakoto Tanaka
    • H02K19/10
    • H02K19/103H02K29/03
    • A regenerative switched reluctance motor and a motor drive system therefor are provided. The motor has a rotor 33 with stacked rotor units 33a-33d each comprising 2n salient poles and a stator 31 with stacked stator units 31a-31d surrounded by and corresponding to the rotor units and each comprising 4n magnetic poles to form a predetermined gap with the salient poles of the corresponding rotor unit. A first excitation coil 32(A) is wound on every other one of the 4n magnetic poles of each stator unit, while a second excitation coil 32(B) is wound on the remaining magnetic poles thereof. The rotor units are sequentially shifted by a predetermined angle in angular position relative to the stator units. The switched reluctance motor and the motor drive system can efficiently drive the motor and recover regenerative power with little torque ripple and noise.
    • 提供一种再生式开关磁阻电动机及其电动机驱动系统。 电动机具有转子33,转子33具有堆叠的转子单元33a-33d,每个转子单元包括2n个凸极,定子31具有层叠的定子单元31a-31d,该转子单元由转子单元包围并对应于转子单元,每个包括4n个磁极,以形成与 相应转子单元的极点。 第一励磁线圈32(A)缠绕在每个定子单元的4n个磁极中的每一个上,而第二激励线圈32(B)缠绕在其剩余的磁极上。 转子单元相对于定子单元在角度位置顺序地偏移预定的角度。 开关磁阻电动机和电机驱动系统可以有效地驱动电机,并以较小的转矩脉动和噪声来恢复再生电力。
    • 7. 发明授权
    • Fuel injection control device
    • 燃油喷射控制装置
    • US08051838B2
    • 2011-11-08
    • US12575614
    • 2009-10-08
    • Makoto Tanaka
    • Makoto Tanaka
    • F02M51/00
    • F02D41/401F02D41/3845F02D41/402F02D2041/389F02D2200/0604F02D2250/04F02M63/0007Y02T10/44
    • A high-pressure pump section pumps fuel in a fuel tank into a delivery pipe. An injector injects the fuel in the delivery pipe directly into a combustion chamber of an engine. An ECU calculates fuel injection quantity based on an operation state of the engine and calculates fuel injection time based on the fuel injection quantity and pressure of the fuel in the delivery pipe. The ECU calculates fuel injection start timing based on the operation state of the engine. The ECU sets the fuel injection time and the fuel injection start timing as a base injection period. When a fuel inflow period, in which the high-pressure fuel flows into the delivery pipe with the fuel pumping by the high-pressure pump section, overlaps with the base injection period, the ECU changes the base injection period to eliminate or reduce the overlap.
    • 高压泵部分将燃料箱中的燃料泵送到输送管中。 喷射器将输送管中的燃料直接喷射到发动机的燃烧室中。 ECU根据发动机的运转状态来计算燃料喷射量,并基于输送管内的燃料的燃料喷射量和压力计算燃料喷射时间。 ECU根据发动机的运转状态来计算燃料喷射开始时刻。 ECU将燃料喷射时间和燃料喷射开始定时设定为基准喷射期间。 当燃料流入时段(其中高压燃料流入高压泵部分的燃料的输送管道)与基础喷射期间重叠时,ECU改变基准喷射周期以消除或减少重叠 。
    • 8. 发明授权
    • In-vehicle information apparatus and in-vehicle navigation apparatus for high altitude applications
    • 用于高空应用的车载信息装置和车载导航装置
    • US07991547B2
    • 2011-08-02
    • US12230952
    • 2008-09-09
    • Masato YoshidaMakoto Tanaka
    • Masato YoshidaMakoto Tanaka
    • G01C21/30
    • G01C21/3407
    • From among high upland area determination data stored in a hard disk drive, only a portion corresponding to a required segmental region is read into an external memory along with traveling of a vehicle. Determining of a high upland area is then executed based on the portion of the high upland determination in the external storage device. When a high-upland division is present in a vicinity of a present position, a portion of the high upland area determination data is read into the external memory. The read portion of the high upland area determination data corresponds to a high upland area, which covers all the high-upland divisions adjacently existing starting from the high-upland division in the vicinity of the present position. When a high-upland division is not present in the vicinity of the present position, a portion of the high upland area determination data corresponding to a segmental region having a predetermined minimum range centering on the present position is read into the external memory.
    • 从存储在硬盘驱动器中的高地区确定数据中,只有与所需分段区域对应的部分与车辆的行驶一起被读取到外部存储器中。 然后根据外部存储装置中的高地区确定部分来执行高地区的确定。 当在当前位置附近存在高地分区时,将高地区确定数据的一部分读入外部存储器。 高地区确定数据的读取部分对应于高地区,覆盖从现在位置附近的高地分区开始的所有高地陆地分区。 当在当前位置附近不存在高地区划分时,将与当前位置相对应的具有预定最小范围的段区域的高地盘区域确定数据的一部分读入外部存储器。
    • 10. 发明授权
    • Sensor
    • 传感器
    • US07770302B2
    • 2010-08-10
    • US12271995
    • 2008-11-17
    • Makoto Tanaka
    • Makoto Tanaka
    • G01B5/016G01B5/004
    • G01B5/016G01B7/016
    • To provide a sensor having a long operational life. A sensor which senses contact with an object through tilting of a probe having a rod shape, the sensor including: a housing having a hollow columnar shape; the probe arranged to project from an inside of the housing to an outside of the housing, and capable of reciprocating and tilting with respect to the housing; connectors fixed to a part of the probe, which is located inside the housing; terminals fixed to positions inside the housing that come into contact with the connectors, and which conduct electricity through the contact with the connectors; a probe biasing unit configured to force the probe along a direction of the reciprocation so that the connectors come into contact with the terminals; and a releasing unit configured to release the contact between the connectors and the terminals brought upon by the probe biasing unit.
    • 提供具有长使用寿命的传感器。 传感器,其通过倾斜具有杆状的探针来感测与物体的接触,所述传感器包括:具有中空柱状的壳体; 所述探针被布置成从所述壳体的内部突出到所述壳体的外部,并且能够相对于所述壳体往复运动和倾斜; 连接器固定在位于壳体内部的探针的一部分上; 端子固定在与连接器接触的壳体内的位置,并且通过与连接器的接触而导电; 探针偏压单元,其构造成沿着往复运动的方向迫使探头,使得连接器与端子接触; 以及释放单元,其构造成释放所述连接器与由所述探针偏压单元带来的所述端子之间的接触。