会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Integer division method which is secure against covert channel attacks
    • 整数分割方法,可以防范隐蔽通道攻击
    • US20060133603A1
    • 2006-06-22
    • US10534873
    • 2003-11-13
    • Marc JoyeKarine Villegas
    • Marc JoyeKarine Villegas
    • H04L9/28H04L9/00
    • G06F7/535G06F7/72G06F2207/7261H04L9/003H04L9/302
    • The invention relates to a cryptographic method involving an integer division of type q=a div b and r=a mod b, wherein a is a number of m bits, b is a number of n bits, with n being less than or equal to m, and bn−1 being non-null and the most significant bit of b. In addition, each iteration of a loop subscripted by i, which varies between 1 and m−n+1, involves a partial division of a word A of n bits of number a by number b in order to obtain one bit of quotient q. According to the invention, the same operations are performed with each iteration, regardless of the value of the quotient bit obtained. In different embodiments of the invention, one of the following is also performed with each iteration: the addition and subtraction of number b to/from word A; the addition of number b or a complementary number /b of b to word A; or a complement operation at 2n of an updated datum (b or /b) or a dummy datum (c or /c) followed by the addition of the datum updated with word A.
    • 本发明涉及一种包含类型为q = a div b和r = a mod b的整数除法的密码方法,其中a是m比特数,b是n比特数,n小于或等于 m和b n-1 1是非空的,b的最高有效位。 另外,在i和m-n + 1之间变化的由i下标的循环的每次迭代都涉及到数字a的n位的字A的部分划分,以便获得一个位q。 根据本发明,与每个迭代执行相同的操作,而不管获得的商位的值如何。 在本发明的不同实施例中,每次迭代还执行以下之一:对于字A的数字b的加和减; 在字A中添加数字b或补数b / b; 或更新的数据(b或/ b)或虚拟数据(c或/ c)的2“的补码操作,然后添加用字A更新的数据。
    • 3. 发明授权
    • Integer division method secure against covert channel attacks
    • 整数分割法可以防范隐蔽通道攻击
    • US08233614B2
    • 2012-07-31
    • US10534873
    • 2003-11-13
    • Marc JoyeKarine Villegas
    • Marc JoyeKarine Villegas
    • H04K1/00H04L9/00H04L9/28
    • G06F7/535G06F7/72G06F2207/7261H04L9/003H04L9/302
    • The invention relates to a cryptographic method involving an integer division of type q=a div b and r=a mod b, wherein a is a number of m bits, b is a number of n bits, with n being less than or equal to m, and bn−1 being non-null and the most significant bit of b. In addition, each iteration of a loop subscripted by i, which varies between 1 and m−n+1, involves a partial division of a word A of n bits of number a by number b in order to obtain one bit of quotient q. According to the invention, the same operations are performed with each iteration, regardless of the value of the quotient bit obtained. In different embodiments of the invention, one of the following is also performed with each iteration: the addition and subtraction of number b to/from word A; the addition of number b or a complementary number /b of b to word A; or a complement operation at 2n of an updated datum (b or /b) or a dummy datum (c or /c) followed by the addition of the datum updated with word A.
    • 本发明涉及一种包含类型为q = a div b和r = a mod b的整数除法的密码方法,其中a是m比特数,b是n比特数,n小于或等于 m和bn-1是非空的,b的最高有效位。 另外,在i和m-n + 1之间变化的由i下标的循环的每次迭代都涉及到数字a的n位的字A的部分划分,以便获得一个位q。 根据本发明,与每个迭代执行相同的操作,而不管获得的商位的值如何。 在本发明的不同实施例中,每次迭代还执行以下之一:对于字A的数字b的加和减; 在字A中添加数字b或补数b / b; 或在更新的数据(b或/ b)或虚拟数据(c或/ c)的2n处的补码操作,随后添加用词A更新的数据。
    • 9. 发明授权
    • Method and a device for performing torus-based cryptography
    • 方法和用于执行基于环面的密码学的设备
    • US08548162B2
    • 2013-10-01
    • US13377663
    • 2010-06-10
    • Marc Joye
    • Marc Joye
    • H04L9/00
    • H04L9/3013H04L9/302H04L9/3255H04L2209/12H04L2209/30
    • At CRYPTO 2003, Rubin and Silverberg introduced the concept of torus-based cryptography over a finite field. The present invention extends their setting to the ring of integers modulo N, thus obtaining compact representations for cryptographic systems that base their security on the discrete logarithm problem and the factoring problem. This can result in small key sizes and substantial savings in memory and bandwidth. However, unlike the case of finite field, analogous trace-based compression methods cannot be adapted to accommodate the extended setting of the invention when the underlying systems require more than a mere exponentiation. The invention finds particular application in a torus-based implementation of the ACJT group signature scheme. Also provided is a processor.
    • 在CRYPTO 2003年,Rubin和Silverberg在有限的领域上介绍了基于环面的加密技术的概念。 本发明将它们的设置扩展到模N的整数环,从而获得基于离散对数问题和保理问题的安全性的密码系统的紧凑表示。 这可能导致小的密钥大小,并显着节省内存和带宽。 然而,与有限域的情况不同,当底层系统需要的不仅仅是求幂时,类似的基于跟踪的压缩方法不能适应于适应本发明的扩展设置。 本发明在ACJT组签名方案的基于环面的实现中发现具体应用。 还提供了处理器。
    • 10. 发明授权
    • Method and apparatus for generating a signature for a message and method and apparatus for verifying such a signature
    • 用于生成用于消息的签名的方法和装置以及用于验证这样的签名的方法和装置
    • US08223963B2
    • 2012-07-17
    • US12737073
    • 2009-06-02
    • Marc Joye
    • Marc Joye
    • G06F21/00
    • H04L9/3249H04L9/302H04L2209/56H04L2209/80
    • A method of generating a signature σ for a message m, the method enabling online/offline signatures. Two random primes p and q are generated, with N=pq; two random quadratic residues g and x are chosen in Z*N, and, for an integer z, h=g−z mod N is calculated. This gives the public key {g, h, x, N} and the private key {p, q, z}. Then, an integer t and a prime e are chosen. The offline signature part y may then be calculated as y=(xg−t)1/eb mod N where b is an integer bigger than 0, predetermined in the signature scheme. The online part k of the signature on message m is then calculated as k=t+mz and the signature σ on message m is generated as σ=(k, y, e) and returned. To verify the signature, it is checked that 1) e is an odd IE-bit integer, 2) k is an IK-bit integer, and 3) yebgkhm≡x(mod N). An advantage of the method is that it may be performed without hashing. Also provided are a signing device, a verification device, and computer program supports.
    • 生成签名和方法的方法 对于消息m,该方法启用在线/离线签名。 产生两个随机素数p和q,其中N = pq; 在Z * N中选择两个随机二次残差g和x,对于整数z,计算h = g-z mod N。 这给出公钥{g,h,x,N}和私钥{p,q,z}。 然后,选择整数t和素数e。 然后可以将离线签名部分y计算为y =(xg-t)1 / eb mod N,其中b是大于0的整数,在签名方案中是预定的。 然后,消息m上的签名的在线部分k被计算为k = t + mz和签名&sgr; on消息m生成为&sgr; =(k,y,e)并返回。 为了验证签名,检查1)e是奇数IE位整数,2)k是IK位整数,以及3)yebgkhm≡x(mod N)。 该方法的优点在于可以不进行散列来执行。 还提供了签名装置,验证装置和计算机程序支持。