会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Model-Based Retargeting of Layout Patterns for Sub-Wavelength Photolithography
    • 用于亚波长光刻的布局图案的基于模型的重新定位
    • US20100333049A1
    • 2010-12-30
    • US12492301
    • 2009-06-26
    • Kanak B. AgarwalShayak BanerjeeSani R. Nassif
    • Kanak B. AgarwalShayak BanerjeeSani R. Nassif
    • G06F17/50
    • G03F1/36
    • Mechanism are provided for model-based retargeting of photolithographic layouts. An optical proximity correction is performed on a set of target patterns for a predetermined number of iterations until a counter value exceeds a maximum predetermined number of iterations in order to produce a set of optical proximity correction mask shapes. A set of lithographic contours is generated for each of the set of optical proximity correction mask shapes in response to the counter value exceeding the maximum predetermined number of iterations. A normalized image log slope (NILS) extraction is performed on the set of target shapes and use the set of lithographic contours to produce NILS values. The set of target patterns is modified based on the NILS values in response to the NILS values failing to be within a predetermined limit. The steps are repeated until the NILS values are within the predetermined limit.
    • 提供了用于光刻布局的基于模型的重新定位的机制。 对预定次数的迭代的一组目标图案执行光学邻近校正,直到计数器值超过最大预定迭代次数为了产生一组光学邻近校正掩模形状。 响应于计数器值超过最大预定迭代次数,针对所述一组光学邻近校正掩模形状中的每一个生成一组光刻轮廓。 在目标形状集上执行归一化图像对数斜率(NILS)提取,并使用该组光刻轮廓来产生NILS值。 基于NILS值响应于NILS值不能在预定限度内修改目标模式集合。 重复这些步骤,直到NILS值在预定限度内。
    • 2. 发明申请
    • Reducing Through Process Delay Variation in Metal Wires
    • 通过金属线的过程延迟变化减少
    • US20120317523A1
    • 2012-12-13
    • US13157909
    • 2011-06-10
    • Kanak B. AgarwalShayak BanerjeeSani R. Nassif
    • Kanak B. AgarwalShayak BanerjeeSani R. Nassif
    • G06F17/50
    • G03F1/70
    • A mechanism is provided for reducing through process delay variation in metal wires by layout retargeting. The mechanism performs initial retargeting, decomposition, and resolution enhancement techniques. For example, the mechanism may perform optical proximity correction. The mechanism then performs lithographic simulation and optical rules checking. The mechanism provides retargeting rules developed based on coupling lithography simulation and resistance/capacitance (RC) extraction. The mechanism performs RC extraction to capture non-linear dependency of RC on design shape dimensions. If the electrical properties in the lithographic simulation are within predefined specifications, the mechanism accepts the retargeting rules; however, if the electrical properties from RC extraction are outside the predefined specifications, the mechanism modifies the retargeting rules and repeats resolution enhancement techniques.
    • 提供了一种通过布局重新定位来减少金属线中的工艺延迟变化的机制。 该机制执行初始重定向,分解和分辨率增强技术。 例如,该机构可以执行光学邻近校正。 该机制进行光刻模拟和光学规则检查。 该机制提供了基于耦合光刻模拟和电阻/电容(RC)提取开发的重定向规则。 该机制执行RC提取以捕获RC对设计形状尺寸的非线性依赖性。 如果光刻仿真中的电性能在预定义的规格范围内,则该机制接受重定向规则; 然而,如果来自RC提取的电性能超出预定义的规范,则该机制修改重定向规则并重复分辨率增强技术。
    • 3. 发明授权
    • Model-based retargeting of layout patterns for sub-wavelength photolithography
    • 用于亚波长光刻的布局图案的基于模型的重新定位
    • US08321818B2
    • 2012-11-27
    • US12492301
    • 2009-06-26
    • Kanak B. AgarwalShayak BanerjeeSani R. Nassif
    • Kanak B. AgarwalShayak BanerjeeSani R. Nassif
    • G06F17/50
    • G03F1/36
    • Mechanism are provided for model-based retargeting of photolithographic layouts. An optical proximity correction is performed on a set of target patterns for a predetermined number of iterations until a counter value exceeds a maximum predetermined number of iterations in order to produce a set of optical proximity correction mask shapes. A set of lithographic contours is generated for each of the set of optical proximity correction mask shapes in response to the counter value exceeding the maximum predetermined number of iterations. A normalized image log slope (NILS) extraction is performed on the set of target shapes and use the set of lithographic contours to produce NILS values. The set of target patterns is modified based on the NILS values in response to the NILS values failing to be within a predetermined limit. The steps are repeated until the NILS values are within the predetermined limit.
    • 提供了用于光刻布局的基于模型的重新定位的机制。 对预定次数的迭代的一组目标图案执行光学邻近校正,直到计数器值超过最大预定迭代次数为了产生一组光学邻近校正掩模形状。 响应于计数器值超过最大预定迭代次数,针对所述一组光学邻近校正掩模形状中的每一个生成一组光刻轮廓。 在目标形状集上执行归一化图像对数斜率(NILS)提取,并使用该组光刻轮廓来产生NILS值。 基于NILS值响应于NILS值不能在预定限度内修改目标模式集合。 重复这些步骤,直到NILS值在预定限度内。
    • 4. 发明授权
    • Reducing through process delay variation in metal wires
    • 通过金属线中的工艺延迟变化减少
    • US08402398B2
    • 2013-03-19
    • US13157909
    • 2011-06-10
    • Kanak B. AgarwalShayak BanerjeeSani R. Nassif
    • Kanak B. AgarwalShayak BanerjeeSani R. Nassif
    • G06F17/50G06F9/455
    • G03F1/70
    • A mechanism is provided for reducing through process delay variation in metal wires by layout retargeting. The mechanism performs initial retargeting, decomposition, and resolution enhancement techniques. For example, the mechanism may perform optical proximity correction. The mechanism then performs lithographic simulation and optical rules checking. The mechanism provides retargeting rules developed based on coupling lithography simulation and resistance/capacitance (RC) extraction. The mechanism performs RC extraction to capture non-linear dependency of RC on design shape dimensions. If the electrical properties in the lithographic simulation are within predefined specifications, the mechanism accepts the retargeting rules; however, if the electrical properties from RC extraction are outside the predefined specifications, the mechanism modifies the retargeting rules and repeats resolution enhancement techniques.
    • 提供了一种通过布局重新定位来减少金属线中的工艺延迟变化的机制。 该机制执行初始重定向,分解和分辨率增强技术。 例如,该机构可以执行光学邻近校正。 该机制进行光刻模拟和光学规则检查。 该机制提供了基于耦合光刻模拟和电阻/电容(RC)提取开发的重定向规则。 该机制执行RC提取以捕获RC对设计形状尺寸的非线性依赖性。 如果光刻仿真中的电性能在预定义的规格范围内,则该机制接受重定向规则; 然而,如果来自RC提取的电性能超出预定义的规范,则该机制修改重定向规则并重复分辨率增强技术。
    • 9. 发明申请
    • Optical Proximity Correction for Transistors Using Harmonic Mean of Gate Length
    • 使用栅极长度的谐波均值的晶体管的光学接近校正
    • US20110150343A1
    • 2011-06-23
    • US12645627
    • 2009-12-23
    • Kanak B. AgarwalShayak Banerjee
    • Kanak B. AgarwalShayak Banerjee
    • G06K9/48
    • G06K9/48G03F1/36G03F7/70441
    • A mechanism is provided for harmonic mean optical proximity correction (HMOPC). A lithographic simulator in a HMOPC mechanism generates an image of a mask shape based on a target shape on a wafer thereby forming one or more lithographic contours. A cost function evaluator module determines a geometric cost function associated with the one or more lithographic contours. An edge movement module minimizes the geometric cost function thereby forming a minimized geometric cost function. The edge movement module determines a set of edge movements for each slice in a set of slices associated with the one or more lithographic contours using the minimized geometric cost function. The edge movement module moves the edges of the mask shape using the set of edge movements for each slice in the set of slices. The HMOPC mechanism then produces a clean mask shape using the set of edge movements.
    • 提供了一种用于谐波平均光学邻近校正(HMOPC)的机制。 HMOPC机构中的光刻模拟器基于晶片上的目标形状产生掩模形状的图像,从而形成一个或多个平版轮廓。 成本函数评估器模块确定与一个或多个平版轮廓相关联的几何成本函数。 边缘移动模块最小化几何成本函数,从而形成最小化的几何成本函数。 边缘移动模块使用最小化的几何成本函数确定与一个或多个平版印刷轮廓相关联的一组切片中的每个切片的一组边缘移动。 边缘移动模块使用该组切片中的每个切片的边缘移动集来移动掩模形状的边缘。 然后,HMOPC机构使用一组边缘移动产生干净的掩模形状。
    • 10. 发明授权
    • Frequency domain layout decomposition in double patterning lithography
    • 双图案光刻中的频域布局分解
    • US08627244B2
    • 2014-01-07
    • US13171513
    • 2011-06-29
    • Kanak B. AgarwalShayak Banerjee
    • Kanak B. AgarwalShayak Banerjee
    • G06F17/50
    • G03F7/70466
    • A mechanism is provided for frequency domain layout decomposition in double pattern lithography (DPL) based on Fourier coefficient optimization (FCO). The Fourier transform of a layout represents the spatial frequency terms present in the layout. The mechanism models decomposed patterns for two exposures as a function of the corresponding Fourier coefficients. For each exposure, the mechanism sets the corresponding Fourier coefficients to zero for spatial frequency terms greater than the cut-off frequency of the optical system. The mechanism then optimizes non-zero Fourier coefficients for the two exposures to decompose the original target. The mechanism provides frequency domain optimization instead of conventional spatial domain methods, which naturally leads to optics-aware decomposition and stitch insertion in arbitrary two dimensional patterns.
    • 基于傅里叶系数优化(FCO)的双模式光刻(DPL)中的频域布局分解提供了一种机制。 布局的傅里叶变换表示布局中存在的空间频率项。 机制模型将两次曝光的分解模式作为相应的傅里叶系数的函数。 对于每次曝光,机构将相应的傅立叶系数设置为零,以使空间频率项大于光学系统的截止频率。 然后,该机制优化用于两次曝光的非零傅立叶系数以分解原始目标。 该机制提供频域优化,而不是传统的空间域方法,这自然导致光学感知分解和针脚插入任意二维模式。