会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • AMIDE PROTON TRANSFER (APT) AND ELECTRIC PROPERTIES TOMOGRAPHY (EPT) IMAGING IN A SINGLE MR ACQUISITION
    • 单次MR获取中的AMAT PROTON TRANSFER(APT)和电子性质TOMOGRAPHY(EPT)成像
    • WO2014154728A1
    • 2014-10-02
    • PCT/EP2014/056018
    • 2014-03-26
    • KONINKLIJKE PHILIPS N.V.PHILIPS DEUTSCHLAND GMBH
    • KATSCHER, UlrichDONEVA, Mariya IvanovaSTEHNING, ChristianVAN DEN BRINK, Johan SamuelKEUPP, Jochen
    • G01R33/48G01R33/56
    • G01R33/5605G01R33/48G01R33/4828
    • The present invention relates to a magnetic resonance imaging, MRI, system (200) for acquiring magnetic resonance data from a target volume in a subject (218), the MRI system (200) comprising a memory (236) for storing machine executable instructions; and a processor (230) for controlling the MRI system (200), wherein execution of the machine executable instructions causes the processor (230) to use a first MRI sequence (401) containing a first selective RF pulse (413) followed by a first excitation RF pulse (415) to control the MRI system (200) to selectively excite and saturate exchangeable amide protons within a first frequency range in the target volume; irradiate said target volume with the first excitation RF pulse (415) that is adapted to excite bulk water protons in the target volume; and acquire first magnetic resonance imaging data from the target volume in response to the first excitation RF pulse (415); use a second MRI sequence (403) containing a second selective RF pulse (423) followed by a second excitation RF pulse (425) to control the MRI system (200) to selectively excite and saturate the exchangeable amide protons within a second frequency range in the target volume; irradiate said target volume with the second excitation RF pulse (425) that is adapted to excite said bulk water protons; and acquire second magnetic resonance imaging data from said target volume in response to the second excitation RF pulse (425); wherein the first MRI sequence (401) comprises gradients (417) having first gradient polarities reverse of second gradient polarities (427) of the second MRI sequence (403).
    • 本发明涉及一种用于从对象(218)中的目标体积获取磁共振数据的磁共振成像(MRI)系统(200),所述MRI系统(200)包括用于存储机器可执行指令的存储器(236) 以及用于控制所述MRI系统(200)的处理器(230),其中所述机器可执行指令的执行使所述处理器(230)使用包含第一选择性RF脉冲(413)的第一MRI序列(401) 激励RF脉冲(415)以控制MRI系统(200)以在目标体积的第一频率范围内选择性地激发和饱和可交换的酰胺质子; 用适于激发目标体积中的体积水质子的第一激发RF脉冲(415)照射所述目标体积; 并且响应于所述第一激发RF脉冲(415)从所述目标体积获取第一磁共振成像数据; 使用包含第二选择性RF脉冲(423)的第二MRI序列(403),随后是第二激发RF脉冲(425)以控制MRI系统(200)在第二频率范围内选择性地激发和饱和可交换的酰胺质子 目标体积; 用适于激发所述主体水质子的第二激发RF脉冲(425)照射所述目标体积; 并响应于所述第二激励RF脉冲从所述目标体积获取第二磁共振成像数据(425); 其中所述第一MRI序列(401)包括具有与所述第二MRI序列(403)的第二梯度极性(427)相反的第一梯度极性的梯度(417)。
    • 2. 发明申请
    • LIGHT DATA COMMUNICATION LINK DEVICE FOR USE IN MAGNETIC RESONANCE EXAMINATION SYSTEMS
    • 用于磁共振检测系统的光数据通信链路设备
    • WO2016087272A1
    • 2016-06-09
    • PCT/EP2015/077578
    • 2015-11-25
    • KONINKLIJKE PHILIPS N.V.
    • VAN HELVOORT, Marinus Johannes Adrianus MariaVAN DEN BRINK, Johan Samuel
    • G01R33/36G01R33/3415
    • G01R33/3692G01R33/3415G01R33/3657G01R33/385H04B10/2503
    • A light data communication link device (50) for use in a magnetic resonance examination system (10) comprises a first light emitter and receiver unit (52) and a second light emitter and receiver unit (76). A light generating member (54), a first optical waveguide (62) and a light diffuser (58) of the first light emitter and receiver unit (52), a distance in space between the light diffuser (58) and a converging lens (84) of the second light emitter and receiver unit (76), and the converging lens (84), a second optical waveguide (88) and a light receiving member (80) of the second light emitter and receiver unit (76) form a first optical pathway (90) for data communication. A light generating member (78), a first optical waveguide (86) and a light diffuser (82) of the second light emitter and receiver unit (76), a distance in space between the light diffuser (82) and a converging lens (60) of the first light emitter and receiver unit (52), and a converging lens (60), a second optical waveguide (64) and a light receiving member (56) of the first light emitter and receiver unit (52) form a second optical pathway (92) for data communication. At least the light generating member (54) of the first light emitter and receiver unit (52) is configured to be arranged outside a volume defined by the scanning unit (12). The second light emitter and receiver unit (76) is configured to be at least partially arranged inside the volume (30); and a magnetic resonance examination system (10) comprising such light data communication link device (50) for establishing a bi-directional data communication link between a control unit (26) of the magnetic resonance examination system (10) and at least one auxiliary electronic device (40) being arranged inside the volume (30).
    • 一种用于磁共振检查系统(10)的光数据通信链路装置(50)包括第一光发射器和接收器单元(52)和第二光发射器和接收器单元(76)。 第一光发射器和接收器单元(52)的发光部件(54),第一光波导(62)和光漫射器(58),光漫射器(58)和会聚透镜 第二光发射器和接收器单元(76)的第二光波导(88)和第二光发射器和接收器单元(76)的第二光波导(88)和光接收构件(80)形成第二光发射器和接收器单元 第一光路(90)用于数据通信。 第二光发射器和接收器单元(76)的发光部件(78),第一光波导(86)和光漫射器(82),光漫射器(82)和会聚透镜 第一光发射器和接收器单元(52)的第一光发射器和接收器单元(52)的第二光波导(64)和第二光波导(64)以及第一光发射器和接收器单元(52)的光接收构件(56) 用于数据通信的第二光学路径(92)。 至少第一光发射器和接收器单元(52)的发光部件(54)被配置为布置在由扫描单元(12)限定的体积的外部。 第二光发射器和接收器单元(76)被配置为至少部分地布置在容积(30)内; 以及磁共振检查系统(10),其包括用于在所述磁共振检查系统(10)的控制单元(26)和至少一个辅助电子装置(50)之间建立双向数据通信链路的所述光数据通信链路装置(50) 装置(40)布置在容积(30)内。
    • 3. 发明申请
    • BREATH-HOLD DETECTION FOR MAGNETIC RESONANCE IMAGING
    • 用于磁共振成像的呼吸保持检测
    • WO2015092062A1
    • 2015-06-25
    • PCT/EP2014/078935
    • 2014-12-20
    • KONINKLIJKE PHILIPS N.V.
    • VAN DEN BRINK, Johan SamuelBECK, Gabriele Marianne
    • G01R33/567G01R33/48G01R33/565
    • G01R33/5676G01R33/283G01R33/4818G01R33/4826G01R33/56509
    • The present invention provides a method for magnetic resonance (MR) imaging of an area (144) of a subject of interest (120), comprising the steps of issuing a breath-hold command to the subject of interest (120), performing motion detection of the subject of interest (120) to detect a breath-hold condition in the area (144) of the subject of interest (120), upon detection of the breath-hold condition in the area (144) of the subject of interest (120), performing k-space (154) sampling of the area (144) of the subject of interest (120) with a given resolution, processing the k-space (154) samples covering the area (144) of the subject of interest (120) to obtain a MR image of the area (144) of the subject of interest (120). The present invention also provides a MR imaging system (110) for providing an image representation of an area (144) of a subject of interest (120) positioned in an examination space (116) of the MR imaging system (110), wherein the MR imaging system (110) is adapted to perform the method for magnetic resonance imaging according to the above method.
    • 本发明提供一种用于感兴趣对象区域(144)的磁共振(MR)成像方法,包括以下步骤:向感兴趣对象发出呼吸保持命令(120),执行运动检测 (120)检测感兴趣对象的区域(144)中的呼吸保持状态(120)以检测感兴趣对象的区域(144)中的呼吸保持状态(120) 120),以给定的分辨率对感兴趣对象(120)的区域(144)进行k空间(154)采样,处理覆盖感兴趣对象的区域(144)的k空间(154)样本 (120)以获得感兴趣对象的区域(144)的MR图像(120)。 本发明还提供了一种用于提供位于MR成像系统(110)的检查空间(116)中的感兴趣对象(120)的区域(144)的图像表示的MR成像系统(110),其中, MR成像系统(110)适于根据上述方法执行磁共振成像方法。
    • 5. 发明申请
    • VIDEO SURVEILLANCE FOR MRI SAFETY MONITORING
    • 视频监控用于MRI安全监控
    • WO2015071796A1
    • 2015-05-21
    • PCT/IB2014/065556
    • 2014-10-23
    • KONINKLIJKE PHILIPS N.V.
    • VAN DEN BRINK, Johan Samuel
    • H04N7/18
    • H04N7/181G01R33/288G06K9/00771G06T7/70
    • A magnetic resonance imaging (MRI) location surveillance system (10) for determining access to a room (12) containing an MRI device (14) which includes a superconducting magnet and images subjects includes at least one video camera (26) positioned to view an entrance (26) to the room containing the MRI device (14), a recognize unit (36) in communication with the at least one video camera, a classify unit (37), and an authorize unit (38). The at least one video camera (26) images objects and persons approaching the entrance (16). The recognize unit (36) receives the imaged objects and persons, and recognizes each imaged object and each imaged person. The classify unit (37) classifies each recognized object (24) and each recognized person (22) according to MRI safety. The authorize unit (38) determines access to the room (14) containing the MRI device (14) based on each classified object and each classified person.
    • 用于确定对包含超导磁体和图像对象的MRI装置(14)的房间(12)的访问的磁共振成像(MRI)位置监视系统(10)包括至少一个摄像机(26) 入口(26)到包含MRI装置(14)的房间,与所述至少一个摄像机通信的识别单元(36),分类单元(37)和授权单元(38)。 所述至少一个摄像机(26)对接近入口(16)的物体和人员进行成像。 识别单元(36)接收成像对象和人物,并识别每个成像对象和每个被摄体的人物。 分类单元(37)根据MRI安全性对每个识别对象(24)和每个识别的人(22)进行分类。 授权单元(38)基于每个分类对象和每个分类的人确定对包含MRI设备(14)的房间(14)的访问。
    • 7. 发明申请
    • VIRTUAL CT IMAGES FROM MAGNETIC RESONANCE IMAGES
    • 来自磁共振图像的虚拟CT图像
    • WO2017072034A1
    • 2017-05-04
    • PCT/EP2016/075328
    • 2016-10-21
    • KONINKLIJKE PHILIPS N.V.
    • VAN DEN BRINK, Johan Samuel
    • G01R33/48G01R33/56A61B6/00
    • G01R33/4812A61B6/032A61B6/481A61B6/5217A61B6/5223A61B6/5247A61B6/5294G01R33/5608
    • The invention provides for a medical imaging system (100, 300) comprising: a memory (112) for storing machine executable instructions (140) and a processor (106) for controlling the medical system. Execution of the machine executable instructions causes the processor to: receive (200, 400, 402) multiple magnetic resonance images (120), wherein each of the multiple magnetic resonance images comprises voxels; calculate (202) an image segmentation (122) for each of the multiple magnetic resonance images, wherein the image segmentation divides each of the multiple magnetic resonance images into regions; assign (204) a tissue classification (124) to each of the regions using a magnetic resonance imaging tissue classifier (144); calculate (206) a Hounsfield unit map (128) for each of the multiple magnetic resonance images by assigning a Hounsfield unit value to each of the voxels according to the tissue classification, wherein the Hounsfield mapping comprises a mapping between the tissue classification to Hounsfield units; and calculate (208) a virtual CT image (154) for each of the multiple magnetic resonance images using the Hounsfield unit mapping.
    • 本发明提供了一种医学成像系统(100,300),包括:用于存储机器可执行指令(140)的存储器(112)和用于控制医疗系统的处理器(106)。 机器可执行指令的执行使得处理器:接收(200,400,402)多个磁共振图像(120),其中多个磁共振图像中的每一个包括体素; 针对所述多个磁共振图像中的每一个计算(202)图像分割(122),其中所述图像分割将所述多个磁共振图像中的每一个划分成区域; 使用磁共振成像组织分类器(144)将组织分类(124)分配(204)到所述区域中的每一个; 通过根据组织分类向每个体素指派亨氏单位值来计算(206)多个磁共振图像中的每一个的亨氏单位映射(128),其中亨氏映射包括组织分类与亨氏单位之间的映射 ; 并且使用亨氏单位映射为多个磁共振图像中的每一个计算(208)虚拟CT图像(154)。
    • 8. 发明申请
    • SAFETY MONITORING FOR MAGNETIC RESONANCE IMAGING
    • 磁共振成像的安全监测
    • WO2015058966A1
    • 2015-04-30
    • PCT/EP2014/071643
    • 2014-10-09
    • KONINKLIJKE PHILIPS N.V.
    • VAN DEN BRINK, Johan Samuel
    • A61B5/05A61B5/06
    • G01R33/288A61B5/05A61B5/055A61B5/063
    • The present invention provides a safety monitoring device (10) for detecting radio frequency resonances in a subject of interest (12) comprising an essentially tubular examination space (14), which is vertically arranged, for locating therein the subject of interest (12), an radio frequency resonance device (16), which has at least one connection port (21), for covering at least a part of the examination space (14) along its longitudinal axis, a rotation device(22) for rotating the radio frequency resonance device (16) relative to the subject of interest (12), a controlling device (30) for controlling the rotation of the radio frequency resonance device (16), and a detection device (34) for monitoring an impedance of the at least one connection port (21) of the radio frequency resonance device (16) during the rotation and detecting radio frequency resonances out of the monitored impedance of the at least one connection port (21) of the radio frequency resonance device (16). The present invention further provides a method for detecting radio frequency resonances in a subject of interest (12) comprising the steps of locating the subject of interest (12) within an essentially tubular examination space (14), which is vertically arranged, rotating a radio frequency resonance device (16), which has at least one connection port (21), relative to at least a part of the examination space (14) along its longitudinal axis, monitoring an impedance of the at least one connection port (21) of the radio frequency resonance device during (16) the rotation, and detecting radio frequency resonances out of the monitored impedance of the at least one connection port (21) of the radio frequency resonance device (16).
    • 本发明提供了一种用于检测感兴趣对象(12)中的射频谐振的安全监控装置(10),包括基本上管状的检查空间(14),其垂直布置,用于在其中定位感兴趣的对象(12), 具有至少一个连接端口(21)的射频共振装置(16),用于沿其纵向轴线覆盖所述检查空间(14)的至少一部分;旋转装置(22),用于使所述射频共振 装置(16),用于控制射频共振装置(16)的旋转的控制装置(30),以及用于监视至少一个(16)的阻抗的检测装置(34) 在射频共振装置(16)的至少一个连接端口(21)的监视阻抗之间检测射频共振期间,射频共振装置(16)的连接端口(21)。 本发明还提供了一种用于检测感兴趣对象(12)中的射频谐振的方法,包括以下步骤:将感兴趣对象(12)定位在垂直布置的基本上管状的检查空间(14)中,使无线电 频率共振装置(16),其具有至少一个连接端口(21),其相对于所述检查空间(14)的纵轴线的至少一部分,监测所述至少一个连接端口(21)的阻抗 在(16)旋转期间的射频共振装置,以及检测射频共振装置(16)的至少一个连接端口(21)的监视阻抗之外的射频谐振。
    • 9. 发明申请
    • MAGNETIC RESONANCE IMAGING SYSTEM WITH GHOST ARTIFACT REDUCTION AND METHOD OF OPERATION THEREOF
    • 具有减少手腕功能的磁共振成像系统及其操作方法
    • WO2014155246A1
    • 2014-10-02
    • PCT/IB2014/059983
    • 2014-03-20
    • KONINKLIJKE PHILIPS N.V.
    • CHEN, ZhaolinHEY, SilkeGEERTS-OSSEVOORT, LiesbethKOONEN, Jos JacquesVAN DEN BRINK, Johan Samuel
    • G01R33/565G01R33/561G01R33/48
    • G01R33/56554G01R33/283G01R33/4806G01R33/5616
    • A magnetic resonance imaging (MRI) system (600) for obtaining magnetic resonance (MR) images of a volume. The MRI system may include at least one controller(610) which may be configured to perform a preparation scan (103, 301) to acquire preparation echo phase information (105, PEPI) for a plurality of dynamics of a scan (300); output a plurality of pulse sequences (200) each of which is configured for a corresponding dynamic of the plurality of dynamics of the scan and comprises a navigator sequence (204) and an image sequence (206); acquire navigation and image information (111, 117) for each corresponding pulse sequence of the plurality of pulse sequences; and/or form corrected image information (125) by correcting echo phase information of the image information in accordance with the preparation echo phase information, correcting at least one of gradient delay and frequency offset of the image information in accordance with the navigation information.
    • 一种用于获得体积的磁共振(MR)图像的磁共振成像(MRI)系统(600)。 MRI系统可以包括至少一个控制器(610),其可以被配置为执行准备扫描(103,301)以获取扫描(300)的多个动力学的​​准备回波相位信息(105,PEPI); 输出多个脉冲序列(200),每个脉冲序列被配置用于扫描的多个动力学的​​相应动态,并且包括导航器序列(204)和图像序列(206); 获取针对所述多个脉冲序列中的每个相应脉冲序列的导航和图像信息(111,117); 和/或通过根据准备回波相位信息校正图像信息的回波相位信息来形成校正图像信息(125),根据导航信息校正图像信息的梯度延迟和频率偏移中的至少一个。
    • 10. 发明公开
    • PARALLEL MAGNETIC RESONANCE IMAGING WITH ARCHIVED COIL SENSITIVITY MAPS
    • EP3457160A1
    • 2019-03-20
    • EP17191004.5
    • 2017-09-14
    • Koninklijke Philips N.V.
    • VAN DEN BRINK, Johan Samuel
    • G01R33/561G01R33/58
    • The invention provides for a magnetic resonance imaging system (100, 300, 500) comprising a radio-frequency system (114, 116) comprising multiple coil elements (114) for acquiring imaging magnetic resonance data (166) from a subject (118). The magnetic resonance imaging system further comprises a memory (150) for storing machine executable instructions (160). The memory further stores imaging pulse sequence commands (164). The imaging pulse sequence commands are configured for controlling the magnetic resonance imaging system to acquire the imaging magnetic resonance data according to a chosen parallel magnetic resonance imaging protocol. The magnetic resonance imaging system further comprises a processor (144) for controlling the magnetic resonance imaging system. Execution of the machine executable instructions causes the processor to: control (200) the magnetic resonance imaging system to acquire the imaging magnetic resonance data using the pulse sequence commands; and reconstruct (202) an imaging magnetic resonance image (168) from the imaging magnetic resonance data according to the chosen parallel magnetic resonance imaging protocol. The imaging magnetic resonance image is reconstructed by maximizing consistency between the imaging magnetic resonance data, the imaging magnetic resonance image, and an imaging coil sensitivity map (162). After reconstructing the imaging magnetic resonance image, the processor stores (202) the imaging coil sensitivity map in the memory.