会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Smart user-centric information aggregation
    • 智能用户为中心的信息聚合
    • US08868598B2
    • 2014-10-21
    • US13586711
    • 2012-08-15
    • Jianwen ZhangZhimin ZhangJian-Tao SunJun YanNing LiuLei JiWeizhu ChenZheng Chen
    • Jianwen ZhangZhimin ZhangJian-Tao SunJun YanNing LiuLei JiWeizhu ChenZheng Chen
    • G06F7/00G06F17/30
    • G06F17/30032G06F17/30905
    • A smart user-centric information aggregation system allows a user to define a region of content displayed in a display of a device and performs information aggregation on behalf of the user. The smart user-centric information aggregation system searches, aggregates and groups information related to content included in the region of content for the user while the user can continue to perform his/her original course of actions without interruption. After finding information related to the desired content, the smart user-centric information aggregation system may notify the user and present the found information to the user upon receiving confirmation from the user. The smart user-centric information aggregation system may continue to find new related information and update the presentation with the newly found information periodically, in some instances without user intervention or input.
    • 以智能用户为中心的信息聚合系统允许用户定义显示在设备显示器中的内容区域,并代表用户执行信息聚合。 智能用户为中心的信息聚合系统在用户可以继续执行他/她的原始行为过程而不间断地搜索,聚合和分组与用户内容区域中包含的内容相关的信息。 在找到与期望内容相关的信息之后,智能用户为中心的信息聚合系统可以在接收到来自用户的确认时通知用户并向用户呈现找到的信息。 以智能用户为中心的信息聚合系统可以继续寻找新的相关信息,并且在某些情况下,不需要用户干预或输入,定期更新新发现的信息。
    • 3. 发明申请
    • Web Knowledge Extraction for Search Task Simplification
    • Web知识提取搜索任务简化
    • US20130138655A1
    • 2013-05-30
    • US13307836
    • 2011-11-30
    • Jun YanLei JiNing LiuZheng Chen
    • Jun YanLei JiNing LiuZheng Chen
    • G06F17/30
    • G06F17/30702G06F17/30867
    • Techniques are described for generating structured information from semi-structured web pages, and retrieving the structured knowledge in response to a user query that indicates a query intent. The structured information is automatically extracted offline from semi-structured web pages, through the use of an auto wrapper solution that is noise tolerant, scalable, and automatic. The structured information is stored in a knowledge base, and provided in response to a user search query that indicates a query intent. Extraction of structured information may also include clustering of pages based on their measured similarities. The clusters may be determined based on similar elements in the tag path text data of the pages. A minimum size threshold may be applied to the clusters.
    • 描述了用于从半结构化网页生成结构化信息的技术,以及响应于指示查询意图的用户查询来检索结构化知识。 结构化信息通过使用具有噪声容限,可扩展和自动的自动包装解决方案,从半结构化网页离线自动提取。 结构化信息存储在知识库中,并响应于指示查询意图的用户搜索查询而提供。 结构化信息的提取还可以包括基于其测量的相似性来聚合页面。 可以基于页面的标签路径文本数据中的类似元素来确定簇。 可以将最小大小阈值应用于群集。
    • 4. 发明授权
    • Identification of similar queries based on overall and partial similarity of time series
    • 基于时间序列的总体和部分相似性识别类似查询
    • US08290921B2
    • 2012-10-16
    • US11770505
    • 2007-06-28
    • Ning LiuJun YanBenyu ZhangZheng ChenJian Wang
    • Ning LiuJun YanBenyu ZhangZheng ChenJian Wang
    • G06F7/00G06F17/30
    • G06F17/30864G06F17/3064
    • Techniques for identifying similar queries based on their overall similarity and partial similarity of time series of frequencies of the queries are provided. To identify queries that are similar to a target query, the query analysis system generates, for each query, an overall similarity score for that query and the target query based on the time series of the query and the target query. The query analysis system also generates, for each query, partial similarity scores for the query and the target query based on various time sub-series of the overall time series of the queries. The query analysis system then identifies queries as being similar to the target query based on the overall similarity scores and the partial similarity scores of the queries.
    • 提供了基于其查询的时间序列的总体相似性和部分相似性来识别类似查询的技术。 为了识别类似于目标查询的查询,查询分析系统根据查询和目标查询的时间序列为每个查询生成该查询和目标查询的总体相似性得分。 查询分析系统还根据查询的整个时间序列的各种时间子序列,为每个查询生成查询和目标查询的部分相似度分数。 然后,查询分析系统基于查询的总体相似性得分和部分相似性得分将查询识别为与目标查询相似。
    • 5. 发明申请
    • TRANSFER OF LEARNING FOR QUERY CLASSIFICATION
    • 转学习查询分类
    • US20120259801A1
    • 2012-10-11
    • US13081391
    • 2011-04-06
    • Lei JiJun YanNing LiuZheng Chen
    • Lei JiJun YanNing LiuZheng Chen
    • G06F15/18
    • G06N99/005
    • Transfer of learning trains a new domain for the classification of search queries according to different tasks, as well as the generation of a corresponding domain-specific query classifier that may be used to classify the search queries according to the different tasks in the new domain. The transfer of learning may include preparing a new domain to receive classification knowledge from one or more source domains by populating the new domain with preliminary query patterns extracted for a search engine log. The transfer of learning may further include preparing the classification knowledge in each source domain for transfer to the new domain. The classification knowledge in each source domain may then be transferred to the new domain.
    • 学习的转移为根据不同任务对搜索查询进行分类的新领域提供了新的领域,以及生成可用于根据新域中的不同任务对搜索查询进行分类的相应的域特定查询分类器。 学习的转移可能包括准备一个新的域,以通过用搜索引擎日志提取的初步查询模式填充新域来从一个或多个源域接收分类知识。 学习的转移还可以包括准备每个源域中的分类知识以转移到新的域。 然后可以将每个源域中的分类知识转移到新域。
    • 6. 发明申请
    • Learning Latent Semantic Space for Ranking
    • 学习潜在语义空间进行排名
    • US20100161596A1
    • 2010-06-24
    • US12344093
    • 2008-12-24
    • Jun YanNing LiuLei JiZheng Chen
    • Jun YanNing LiuLei JiZheng Chen
    • G06F7/06G06F17/30
    • G06F17/30675
    • A tool facilitating learning latent semantics for ranking (LLSR) tailored to the ranking task via leveraging relevance information of query-document pairs to learn a tailored latent semantic space such that other documents are better ranked for the queries in the subspace. The tool applying a learning latent semantics for ranking algorithm integrating LLSR, thereby enabling learning an optimal latent semantic space (LSS) for ranking by utilizing relevance information in the training process of subspace learning. The tool enabling an optimization of the LSS as a closed form solution and facilitating reporting the learned LSS.
    • 一种通过利用查询文档对的相关性信息来学习定制的潜在语义空间,使其他文档更好地排列在子空间中的查询的方法,帮助学习用于排名任务的潜在语义(LLSR)。 该工具应用学习潜在语义用于整合LLSR的排序算法,从而通过在子空间学习的训练过程中利用相关性信息来学习优化潜在语义空间(LSS)进行排名。 该工具可以将LSS优化为封闭式解决方案,并有助于报告所学习的LSS。
    • 7. 发明申请
    • PREDICTION OF FUTURE POPULARITY OF QUERY TERMS
    • 预测未来的QUERY条款的普遍性
    • US20090222321A1
    • 2009-09-03
    • US12147468
    • 2008-06-26
    • Ning LiuJun YanZheng ChenJian Wang
    • Ning LiuJun YanZheng ChenJian Wang
    • G06F17/30
    • G06Q30/0202G06F16/951G06F2216/03
    • Disclosed is a system and method that allows a computer system the ability to predict what query terms in a search will be popular. The system creates a unified model that determines the future popularity of a query term over a period of time in the future. The unified model averages the results of three different prediction models to obtain a prediction of the future popularity of a query term. The prediction from the unified model is compared against a threshold value of popularity over a time period. When the predicted popularity of the query exceeds the threshold the term is stored. In some embodiments the period that the term exceeds the threshold may also be stored.
    • 公开了一种系统和方法,其允许计算机系统预测搜索中的哪些查询术语将是流行的能力。 该系统创建一个统一的模型,确定未来一段时间内查询词的未来流行度。 统一模型对三种不同预测模型的结果进行平均,以获得对查询词的未来流行度的预测。 将统一模型的预测与一段时间内的人气阈值进行比较。 当查询的预测流行度超过阈值时,该项被存储。 在一些实施例中,术语超过阈值的周期也可以被存储。
    • 9. 发明申请
    • LEARNING USER INTENT FROM RULE-BASED TRAINING DATA
    • 从基于规则的培训数据学习用户信息
    • US20110289025A1
    • 2011-11-24
    • US12783457
    • 2010-05-19
    • Jun YanNing LiuZheng Chen
    • Jun YanNing LiuZheng Chen
    • G06F15/18G06N5/02
    • G06N5/025G06N20/00
    • The search intent co-learning technique described herein learns user search intents from rule-based training data and denoises and debiases this data. The technique generates several sets of biased and noisy training data using different rules. It trains each of a set of classifiers using different training data sets independently. The classifiers are then used to categorize the training data as well as any unlabeled data. The classified data confidently classified by one classifier is added to other training data sets, and the wrongly classified data is filtered out from the training data sets, so as to create an accurate training data set with which to train a classifier to learn a user's intent for submitting a search query string or targeting a user for on-line advertising based on user behavior.
    • 本文描述的搜索意图共同学习技术从基于规则的训练数据中学习用户搜索意图,并对该数据进行去噪和去噪。 该技术使用不同的规则产生几组偏倚和嘈杂的训练数据。 它使用不同的训练数据集来独立地训练一组分类器中的每一个。 然后,分类器用于对训练数据以及任何未标记的数据进行分类。 通过一个分类器自信分类的分类数据被添加到其他训练数据集,并且从训练数据集中过滤出错误分类的数据,以便创建准确的训练数据集,以训练分类器来学习用户的意图 用于根据用户行为提交搜索查询字符串或定位用户进行在线广告。