会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Object Recognition Using Textons and Shape Filters
    • 使用纹理和形状过滤器的对象识别
    • US20110064303A1
    • 2011-03-17
    • US12944130
    • 2010-11-11
    • John WinnCarsten RotherAntonio CriminisiJamie Shotton
    • John WinnCarsten RotherAntonio CriminisiJamie Shotton
    • G06K9/62
    • G06K9/3233G06K9/4604
    • Given an image of structured and/or unstructured objects, semantically meaningful areas are automatically partitioned from the image, each area labeled with a specific object class. Shape filters are used to enable capturing of some or all of the shape, texture, and/or appearance context information. A shape filter comprises one or more regions of arbitrary shape, size, and/or position within a bounding area of an image, paired with a specified texton. A texton comprises information describing the texture of a patch of surface of an object. In a training process a sub-set of possible shape filters is selected and incorporated into a conditional random field model of object classes. The conditional random field model is then used for object detection and recognition.
    • 给定结构化和/或非结构化对象的图像,语义上有意义的区域将自动从图像分割,每个区域都标有特定的对象类。 形状滤波器用于使得能够捕获部分或全部形状,纹理和/或外观上下文信息。 形状滤波器包括与指定的文本配对的图像的边界区域内的任意形状,大小和/或位置的一个或多个区域。 文本包括描述对象的表面的纹理的信息。 在训练过程中,选择可能的形状滤波器的子集,并将其合并到对象类的条件随机场模型中。 然后将条件随机场模型用于对象检测和识别。
    • 2. 发明申请
    • Object Recognition Using Textons and Shape Filters
    • 使用纹理和形状过滤器的对象识别
    • US20080075361A1
    • 2008-03-27
    • US11534019
    • 2006-09-21
    • John WinnCarsten RotherAntonio CriminisiJamie Shotton
    • John WinnCarsten RotherAntonio CriminisiJamie Shotton
    • G06K9/62G06K9/34G06K9/46G06K9/66
    • G06K9/3233G06K9/4604
    • Given an image of structured and/or unstructured objects we automatically partition it into semantically meaningful areas each labeled with a specific object class. We use a novel type of feature which we refer to as a shape filter. Shape filters enable us to capture some or all of shape, texture and appearance context information. A shape filter comprises one or more regions of arbitrary shape, size and position within a bounding area of an image, paired with a specified texton. A texton comprises information describing the texture of a patch of surface of an object. In a training process we select a sub-set of possible shape filters and incorporate those into a conditional random field model of object classes. That model is then used for object detection and recognition.
    • 给定结构化和/或非结构化对象的图像,我们自动将其划分为语义有意义的区域,每个区域都标有特定的对象类。 我们使用一种我们称为形状滤波器的新型特征。 形状过滤器使我们能够捕获部分或全部形状,纹理和外观上下文信息。 形状滤波器包括在图像的边界区域内的任意形状,大小和位置的一个或多个区域,与指定的文本配对。 文本包括描述对象的表面的纹理的信息。 在训练过程中,我们选择可能的形状过滤器的子集,并将其合并到对象类的条件随机场模型中。 然后将该模型用于对象检测和识别。
    • 3. 发明授权
    • Object recognition using textons and shape filters
    • 使用纹理和形状过滤器的对象识别
    • US07840059B2
    • 2010-11-23
    • US11534019
    • 2006-09-21
    • John WinnCarsten RotherAntonio CriminisiJamie Shotton
    • John WinnCarsten RotherAntonio CriminisiJamie Shotton
    • G06K9/62
    • G06K9/3233G06K9/4604
    • Given an image of structured and/or unstructured objects we automatically partition it into semantically meaningful areas each labeled with a specific object class. We use a novel type of feature which we refer to as a shape filter. Shape filters enable us to capture some or all of shape, texture and appearance context information. A shape filter comprises one or more regions of arbitrary shape, size and position within a bounding area of an image, paired with a specified texton. A texton comprises information describing the texture of a patch of surface of an object. In a training process we select a sub-set of possible shape filters and incorporate those into a conditional random field model of object classes. That model is then used for object detection and recognition.
    • 给定结构化和/或非结构化对象的图像,我们自动将其划分为语义有意义的区域,每个区域都标有特定的对象类。 我们使用一种我们称为形状滤波器的新型特征。 形状过滤器使我们能够捕获部分或全部形状,纹理和外观上下文信息。 形状滤波器包括在图像的边界区域内的任意形状,大小和位置的一个或多个区域,与指定的文本配对。 文本包括描述对象的表面的纹理的信息。 在训练过程中,我们选择可能的形状过滤器的子集,并将其合并到对象类的条件随机场模型中。 然后将该模型用于对象检测和识别。
    • 8. 发明授权
    • Virtual camera translation
    • 虚拟相机翻译
    • US07570803B2
    • 2009-08-04
    • US10763453
    • 2004-01-23
    • Antonio CriminisiAndrew BlakePhilip H. S. TorrJamie Shotton
    • Antonio CriminisiAndrew BlakePhilip H. S. TorrJamie Shotton
    • G06K9/00
    • H04N7/144G06T7/30G06T7/593G06T7/97H04N7/147
    • A multi-layer graph for dense stereo dynamic programming can improve synthesis of cyclopean virtual images by distinguishing between stereo disparities causes by occlusion and disparities caused by non-fronto-parallel surfaces. In addition, cyclopean virtual image processing may be combined with simulation of three-dimensional translation of a virtual camera to assist in aligning the user's gaze with the virtual camera. Such translation may include without limitation one or more of the following: horizontal (e.g., left and right) translation of the virtual camera, vertical translation (e.g., up and down) of the virtual camera, and axial translation (e.g., toward the subject and away from the subject) of the virtual camera.
    • 用于密集立体动态规划的多层图可以通过区分由闭塞引起的立体差异和由非前平行表面引起的差异来改善环形虚拟图像的合成。 此外,环形虚拟图像处理可以与虚拟相机的三维平移的仿真结合起来,以帮助将用户的注视与虚拟相机对准。 这样的翻译可以包括但不限于以下的一个或多个:虚拟相机的水平(例如,左和右)平移,虚拟相机的垂直平移(例如,上下)以及轴向平移(例如朝向主体 并远离主题)的虚拟相机。
    • 10. 发明申请
    • Image Segmentation Using Star-Convexity Constraints
    • 使用星形凸度约束的图像分割
    • US20110274352A1
    • 2011-11-10
    • US12776082
    • 2010-05-07
    • Andrew BlakeVarun GulshanCarsten RotherAntonio Criminisi
    • Andrew BlakeVarun GulshanCarsten RotherAntonio Criminisi
    • G06K9/34
    • G06T7/11G06T7/194G06T2207/20101G06T2207/20168
    • Image segmentation using star-convexity constraints is described. In an example, user input specifies positions of one or more star centers in a foreground to be segmented from a background of an image. In embodiments, an energy function is used to express the problem of segmenting the image and that energy function incorporates a star-convexity constraint which limits the number of possible solutions. For example, the star-convexity constraint may be that, for any point p inside the foreground, all points on a shortest path (which may be geodesic or Euclidean) between the nearest star center and p also lie inside the foreground. In some examples continuous star centers such as lines are used. In embodiments a user may iteratively edit the star centers by adding brush strokes to the image in order to progressively change the star-convexity constraints and obtain an accurate segmentation.
    • 描述了使用星形凸度约束的图像分割。 在一个示例中,用户输入指定要从图像的背景分割的前景中的一个或多个星形中心的位置。 在实施例中,能量函数用于表示分割图像的问题,并且能量函数包含限制可能解决方案数量的星形 - 凸度约束。 例如,星凸约束可以是,对于前景中的任何点p,最近的星中心和p之间的最短路径上的所有点(可以是测地线或欧几里德)也位于前景内。 在一些示例中,使用诸如线的连续星形中心。 在实施例中,用户可以通过向图像中添加画笔笔触来迭代地编辑星形中心,以逐渐改变星形凸度约束并获得准确的分割。