会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Content analysis to detect high stress in oral interviews and text documents
    • 内容分析检测口语访谈中的高压力和文本文件
    • US08337208B1
    • 2012-12-25
    • US12622374
    • 2009-11-19
    • Rajkumar ThirumalainambiCharles C. Jorgensen
    • Rajkumar ThirumalainambiCharles C. Jorgensen
    • G09B19/00G06Q10/00
    • G06Q10/10G09B19/00
    • A system of interrogation to estimate whether a subject of interrogation is likely experiencing high stress, emotional volatility and/or internal conflict in the subject's responses to an interviewer's questions. The system applies one or more of four procedures, a first statistical analysis, a second statistical analysis, a third analysis and a heat map analysis, to identify one or more documents containing the subject's responses for which further examination is recommended. Words in the documents are characterized in terms of dimensions representing different classes of emotions and states of mind, in which the subject's responses that manifest high stress, emotional volatility and/or internal conflict are identified. A heat map visually displays the dimensions manifested by the subject's responses in different colors, textures, geometric shapes or other visually distinguishable indicia.
    • 一个询问系统来估计询问主体是否可能在受试者对面试官的问题的回答中经历高压力,情绪波动和/或内部冲突。 该系统应用四个程序中的一个或多个,第一次统计分析,第二次统计分析,第三次分析和热图分析,以识别一个或多个包含受试者反应的文件,推荐进一步检查。 文件中的词语的特点是表示不同阶层的情绪和心态,其中主体的反应表现出高度压力,情绪波动和/或内部冲突。 热图直观地显示由不同颜色,纹理,几何形状或其他视觉上可区分的标记的受试者反应表现的尺寸。
    • 3. 发明授权
    • Sub-audible speech recognition based upon electromyographic signals
    • 基于肌电信号的子听觉语音识别
    • US08200486B1
    • 2012-06-12
    • US10457696
    • 2003-06-05
    • Charles C. JorgensenDiana D. LeeShane T. Agabon
    • Charles C. JorgensenDiana D. LeeShane T. Agabon
    • G10L15/00G10L15/16G10L15/20G10L17/00
    • G10L15/24G10L15/16
    • Method and system for processing and identifying a sub-audible signal formed by a source of sub-audible sounds. Sequences of samples of sub-audible sound patterns (“SASPs”) for known words/phrases in a selected database are received for overlapping time intervals, and Signal Processing Transforms (“SPTs”) are formed for each sample, as part of a matrix of entry values. The matrix is decomposed into contiguous, non-overlapping two-dimensional cells of entries, and neural net analysis is applied to estimate reference sets of weight coefficients that provide sums with optimal matches to reference sets of values. The reference sets of weight coefficients are used to determine a correspondence between a new (unknown) word/phrase and a word/phrase in the database.
    • 用于处理和识别由可听见的声音源形成的子听觉信号的方法和系统。 接收用于重叠时间间隔的所选数据库中已知单词/短语的子声音模式样本(“SASP”)的序列,并且为每个样本形成信号处理变换(“SPT”)作为矩阵的一部分 的入门价值。 矩阵被分解成条目的连续的,非重叠的二维单元格,并且应用神经网络分析来估计给定与参考值集合的最佳匹配的和的权重系数的参考集。 权重系数的参考集合用于确定数据库中新的(未知)词/短语与单词/短语之间的对应关系。
    • 5. 发明授权
    • Characterization of bioelectric potentials
    • 生物电位的表征
    • US06720984B1
    • 2004-04-13
    • US09606107
    • 2000-06-13
    • Charles C. JorgensenKevin R. Wheeler
    • Charles C. JorgensenKevin R. Wheeler
    • G09G500
    • G06F3/015A61B5/0488A61B5/7264G06K9/00335
    • Method and system for recognizing and characterizing bioelectric potential or electromyographic (EMG) signals associated with at least one of a coarse gesture and a fine gesture that is performed by a person, and use of the bioelectric potentials to enter data and/or commands into an electrical and/or mechanical instrument. As a gesture is performed, bioelectric signals that accompany the gesture are subjected to statistical averaging, within selected time intervals. Hidden Markov model analysis is applied to identify hidden, gesture-related states that are present. A metric is used to compare signals produced by a volitional gesture (not yet identified) with corresponding signals associated with each of a set of reference gestures, and the reference gesture that is “closest” to the volitional gesture is identified. Signals representing the volitional gesture are analyzed and compared with a database of reference gestures to determine if the volitional gesture is likely to be one of the reference gestures. Electronic and/or mechanical commands needed to carry out the gesture may be implemented at an interface to control an instrument. Applications include control of an aircraft, entry of data from a keyboard or other data entry device, and entry of data and commands in extreme environments that interfere with accurate entry.
    • 用于识别和表征与由人执行的粗略手势和精细手势中的至少一个相关联的生物电位或肌电图(EMG)信号的方法和系统,以及使用生物电势将数据和/或命令输入到 电气和/或机械仪器。 当执行手势时,伴随手势的生物电信号在选定的时间间隔内进行统计平均。 隐马尔科夫模型分析应用于识别存在的隐藏的,手势相关的状态。 一个度量被用来比较由一个动词手势(尚未被识别)产生的信号与与一组参考手势中的每一个相关联的对应信号,并且识别出与“最接近”的手势的参考手势。 分析表示感兴趣手势的信号并将其与参考手势的数据库进行比较,以确定该意图手势是否可能是参考手势之一。 可以在用于控制仪器的界面上实现执行手势所需的电子和/或机械命令。 应用包括控制飞机,从键盘或其他数据输入设备输入数据,以及在极端环境中输入数据和命令,这些环境干扰了准确的输入。