会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Shadow Removal in an Image Captured by a Vehicle-Based Camera for Clear Path Detection
    • 阴影去除由基于车辆的相机捕获的图像,用于清除路径检测
    • US20120008021A1
    • 2012-01-12
    • US12830525
    • 2010-07-06
    • Wende ZhangQi WuVijayakumar Bhagavatula
    • Wende ZhangQi WuVijayakumar Bhagavatula
    • H04N9/64
    • G06K9/00791G06K9/346G06T5/007G06T7/12G06T2207/10024G06T2207/30252
    • A method for is provided for creating a shadow-reduced image from a captured image for distinguishing a clear path of travel. Each pixel of a captured input image is plotted according to a two dimensional logarithmic graph. A specific color set relating to an associated color value of a clear path. A linear illumination-invariant axis is determined as a function of the specific color set. An illumination direction for the linear illumination-invariant axis is determined. A log-chromaticity value of each plotted pixel of the specific color set is projected on the axis. Edges in the input image and the illumination-invariant image domain are identified. The identified edges of the input image are compared to identify edges in the illumination-invariant image domain. A determination is made whether a shadow edge is present in response to comparing the edges. A shadow-reduced image is generated for scene analysis by a vehicle vision-based system.
    • 提供了一种用于从捕获的图像创建阴影缩小图像以区分清晰的行进路径的方法。 捕获的输入图像的每个像素根据二维对数图进行绘制。 与清晰路径相关联的颜色值相关的特定颜色集。 线性照明不变轴被确定为特定颜色集合的函数。 确定线性照明不变轴的照明方向。 特定颜色集合的每个绘制像素的对数色度值投影在轴上。 识别输入图像和照明不变图像域中的边缘。 将识别的输入图像的边缘进行比较,以识别照明不变图像域中的边缘。 确定响应于比较边缘是否存在阴影边缘。 通过基于车辆视觉的系统生成用于场景分析的阴影缩小图像。
    • 4. 发明授权
    • Reduced complexity correlation filters
    • 降低复杂度相关滤波器
    • US07483569B2
    • 2009-01-27
    • US10857072
    • 2004-05-28
    • Vijayakumar BhagavatulaMarios Savvides
    • Vijayakumar BhagavatulaMarios Savvides
    • G06K9/00G06K9/36
    • G06K9/746
    • A methodology is described to reduce the complexity of filters for face recognition by reducing the memory requirement to, for example, 2 bits/pixel in the frequency domain. Reduced-complexity correlations are achieved by having quantized MACE, UMACE, OTSDF, UOTSDF, MACH, and other filters, in conjunction with a quantized Fourier transform of the input image. This reduces complexity in comparison to the advanced correlation filters using full-phase correlation. However, the verification performance of the reduced complexity filters is comparable to that of full-complexity filters. A special case of using 4-phases to represent both the filter and training/test images in the Fourier domain leads to further reductions in the computational formulations. This also enables the storage and synthesis of filters in limited-memory and limited-computational power platforms such as PDAs, cell phones, etc. An online training algorithm implemented on a face verification system is described for synthesizing correlation filters to handle pose/scale variations. A way to perform efficient face localization is also discussed. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
    • 描述了一种方法,通过将存储器需求降低到例如频域中的2位/像素来减少用于人脸识别的滤波器的复杂度。 通过与量化的MACE,UMACE,OTSDF,UOTSDF,MACH和其他滤波器结合输入图像的量化傅立叶变换来实现降低复杂度的相关性。 与使用全相位相关的高级相关滤波器相比,这降低了复杂度。 然而,降低的复杂度滤波器的验证性能与全复杂度滤波器的验证性能相当。 在傅立叶域中使用4相代表滤波器和训练/测试图像的特殊情况导致计算公式的进一步减少。 这也使得能够在有限存储器和有限计算能力平台(例如PDA,蜂窝电话等)中存储和合成滤波器。描述了在面部验证系统上实现的在线训练算法,用于合成相关滤波器以处理姿态/比例变化 。 还讨论了执行有效面部定位的一种方法。 由于管理摘要的规则,本摘要不应用于解释索赔。
    • 5. 发明授权
    • Computationally efficient feature extraction and matching iris recognition
    • 计算有效的特征提取和匹配虹膜识别
    • US08861799B2
    • 2014-10-14
    • US13846837
    • 2013-03-18
    • Marios SavvidesKhalid HarunVijayakumar BhagavatulaSungwon ParkYung-Hui Li
    • Marios SavvidesKhalid HarunVijayakumar BhagavatulaSungwon ParkYung-Hui Li
    • G06K9/62G06K9/00
    • G06K9/00604G06K9/00288G06K9/00597G06T7/11G06T2207/10004G06T2207/30201
    • A method and system for uniquely identifying a subject based on an iris image. After obtaining the iris image, the method produces a filtered iris image by applying filters to the iris image to enhance discriminative features of the iris image. The method analyzes an intensity value for pixels in the filtered iris image to produce an iris code that uniquely identifies the subject. The method also creates a segmented iris image by detecting an inner and outer boundary for an iris region in the iris image, and remapping pixels in the iris region, represented in a Cartesian coordinate system, to pixels in the segmented iris image, represented in a log-polar coordinate system, by employing a logarithm representation process. The method also creates a one-dimensional iris string from the iris image by unfolding the iris region by employing a spiral sampling method to obtain sample pixels in the iris region, wherein the sample pixels are the one-dimensional iris string.
    • 一种用于基于虹膜图像唯一地识别对象的方法和系统。 获得虹膜图像后,该方法通过将滤光片应用于虹膜图像来产生滤光虹膜图像,以增强虹膜图像的辨别特征。 该方法分析过滤的虹膜图像中的像素的强度值,以产生唯一地识别被摄体的虹膜代码。 该方法还通过检测虹膜图像中的虹膜区域的内部和外部边界并且将以笛卡尔坐标系表示的虹膜区域中的像素重新映射到分割的虹膜图像中的像素,从而形成分割的虹膜图像,其以 对数极坐标系,采用对数表示过程。 该方法还通过使用螺旋取样方法来展开虹膜区域来获得来自虹膜图像的一维虹膜串,以获得虹膜区域中的样本像素,其中样本像素是一维虹膜串。
    • 6. 发明申请
    • Bi-Directional Pattern Dependent Noise Prediction
    • 双向模式依赖噪声预测
    • US20130188463A1
    • 2013-07-25
    • US13745297
    • 2013-01-18
    • Yibin NgVijayakumar BhagavatulaCai Kui
    • Yibin NgVijayakumar BhagavatulaCai Kui
    • G11B20/10
    • G11B20/10398G11B20/10287G11B2220/2516
    • A method performed by a disk drive, comprising: receiving a plurality of signal samples over a channel in the disk drive; executing a forward pattern-dependent noise prediction (PDNP) operation on the plurality of the signal samples; generating, based on execution of the forward PDNP operation, a first detection of recorded data bits in the plurality of received signal samples; executing a backward PDNP operation on the plurality of the received signal samples; generating, based on execution of the backward PDNP operation, a second detection of recorded data bits in the plurality of received signal samples; comparing the first detection to the second detection; identifying, based on comparing, one or more erasures in the received plurality of signal samples; and generating one or more sequences of bits that promote correction of the one or more erasures.
    • 一种由磁盘驱动器执行的方法,包括:通过所述磁盘驱动器中的通道接收多个信号样本; 对所述多个所述信号样本执行正向模式相关噪声预测(PDNP)操作; 基于所述正向PDNP操作的执行,生成所述多个接收信号样本中的记录数据位的第一检测; 对所述多个接收信号样本执行反向PDNP操作; 基于所述后向PDNP操作的执行,生成所述多个接收信号样本中的记录数据位的第二检测; 将第一检测与第二检测进行比较; 基于比较识别所接收的多个信号样本中的一个或多个擦除; 以及生成促进所述一个或多个擦除的校正的一个或多个比特序列。
    • 7. 发明授权
    • Shadow removal in an image captured by a vehicle-based camera for clear path detection
    • 通过基于车辆的相机拍摄的图像中的阴影去除以进行清晰的路径检测
    • US08294794B2
    • 2012-10-23
    • US12830525
    • 2010-07-06
    • Wende ZhangQi WuVijayakumar Bhagavatula
    • Wende ZhangQi WuVijayakumar Bhagavatula
    • H04N9/64
    • G06K9/00791G06K9/346G06T5/007G06T7/12G06T2207/10024G06T2207/30252
    • A method for is provided for creating a shadow-reduced image from a captured image for distinguishing a clear path of travel. Each pixel of a captured input image is plotted according to a two dimensional logarithmic graph. A specific color set relating to an associated color value of a clear path. A linear illumination-invariant axis is determined as a function of the specific color set. An illumination direction for the linear illumination-invariant axis is determined. A log-chromaticity value of each plotted pixel of the specific color set is projected on the axis. Edges in the input image and the illumination-invariant image domain are identified. The identified edges of the input image are compared to identify edges in the illumination-invariant image domain. A determination is made whether a shadow edge is present in response to comparing the edges. A shadow-reduced image is generated for scene analysis by a vehicle vision-based system.
    • 提供了一种用于从捕获的图像创建阴影缩小图像以区分清晰的行进路径的方法。 捕获的输入图像的每个像素根据二维对数图进行绘制。 与清晰路径相关联的颜色值相关的特定颜色集。 线性照明不变轴被确定为特定颜色集合的函数。 确定线性照明不变轴的照明方向。 特定颜色集合的每个绘制像素的对数色度值投影在轴上。 识别输入图像和照明不变图像域中的边缘。 将识别的输入图像的边缘进行比较,以识别照明不变图像域中的边缘。 确定响应于比较边缘是否存在阴影边缘。 通过基于车辆视觉的系统生成用于场景分析的阴影缩小图像。
    • 8. 发明授权
    • Bi-directional pattern dependent noise prediction
    • 双向模式相关噪声预测
    • US08711661B2
    • 2014-04-29
    • US13745297
    • 2013-01-18
    • Yibin NgVijayakumar BhagavatulaKui Cai
    • Yibin NgVijayakumar BhagavatulaKui Cai
    • G11B11/00
    • G11B20/10398G11B20/10287G11B2220/2516
    • A method performed by a disk drive, comprising: receiving a plurality of signal samples over a channel in the disk drive; executing a forward pattern-dependent noise prediction (PDNP) operation on the plurality of the signal samples; generating, based on execution of the forward PDNP operation, a first detection of recorded data bits in the plurality of received signal samples; executing a backward PDNP operation on the plurality of the received signal samples; generating, based on execution of the backward PDNP operation, a second detection of recorded data bits in the plurality of received signal samples; comparing the first detection to the second detection; identifying, based on comparing, one or more erasures in the received plurality of signal samples; and generating one or more sequences of bits that promote correction of the one or more erasures.
    • 一种由磁盘驱动器执行的方法,包括:通过所述磁盘驱动器中的通道接收多个信号样本; 对所述多个所述信号样本执行正向模式相关噪声预测(PDNP)操作; 基于所述正向PDNP操作的执行,生成所述多个接收信号样本中的记录数据位的第一检测; 对所述多个接收信号样本执行反向PDNP操作; 基于所述后向PDNP操作的执行,生成所述多个接收信号样本中的记录数据位的第二检测; 将第一检测与第二检测进行比较; 基于比较识别所接收的多个信号样本中的一个或多个擦除; 以及生成促进所述一个或多个擦除的校正的一个或多个比特序列。
    • 9. 发明申请
    • Computationally Efficient Feature Extraction and Matching Iris Recognition
    • 计算有效的特征提取和匹配虹膜识别
    • US20130236067A1
    • 2013-09-12
    • US13846837
    • 2013-03-18
    • Marios SavvidesKhalid HarunVijayakumar BhagavatulaSungwon ParkYung-Hui Li
    • Marios SavvidesKhalid HarunVijayakumar BhagavatulaSungwon ParkYung-Hui Li
    • G06K9/00
    • G06K9/00604G06K9/00288G06K9/00597G06T7/11G06T2207/10004G06T2207/30201
    • A method and system for uniquely identifying a subject based on an iris image. After obtaining the iris image, the method produces a filtered iris image by applying filters to the iris image to enhance discriminative features of the iris image. The method analyzes an intensity value for pixels in the filtered iris image to produce an iris code that uniquely identifies the subject. The method also creates a segmented iris image by detecting an inner and outer boundary for an iris region in the iris image, and remapping pixels in the iris region, represented in a Cartesian coordinate system, to pixels in the segmented iris image, represented in a log-polar coordinate system, by employing a logarithm representation process. The method also creates a one-dimensional iris string from the iris image by unfolding the iris region by employing a spiral sampling method to obtain sample pixels in the iris region, wherein the sample pixels are the one-dimensional iris string.
    • 一种用于基于虹膜图像唯一地识别对象的方法和系统。 获得虹膜图像后,该方法通过将滤光片应用于虹膜图像来产生滤光虹膜图像,以增强虹膜图像的辨别特征。 该方法分析过滤的虹膜图像中的像素的强度值,以产生唯一地识别被摄体的虹膜代码。 该方法还通过检测虹膜图像中的虹膜区域的内部和外部边界并且将以笛卡尔坐标系表示的虹膜区域中的像素重新映射到分割的虹膜图像中的像素,从而形成分割的虹膜图像,其以 对数极坐标系,采用对数表示过程。 该方法还通过使用螺旋取样方法来展开虹膜区域来获得来自虹膜图像的一维虹膜串,以获得虹膜区域中的样本像素,其中样本像素是一维虹膜串。
    • 10. 发明申请
    • Shadow Removal in an Image Captured by a Vehicle-Based Camera Using an Optimized Oriented Linear Axis
    • 使用优化的定向线性轴由基于车辆的相机拍摄的图像中的阴影去除
    • US20120008019A1
    • 2012-01-12
    • US12830513
    • 2010-07-06
    • Wende ZhangQi WuVijayakumar Bhagavatula
    • Wende ZhangQi WuVijayakumar Bhagavatula
    • H04N9/64
    • G06K9/00791G06K9/346G06T5/008G06T7/90G06T2207/10024G06T2207/30252
    • A method is provided for removing an illumination generated shadow in a captured image. Each pixel of the captured input image is plotted on a two dimensional logarithmic graph. A linear axis for the plurality of color sets is determined that is substantially orthogonal to a respective illumination direction of each respective color set. A log-chromaticity value of each plotted pixel is projected on the axis. An orientation of the linear axis is selected to minimize an illumination effect and provide optimum separation between each of the respective color sets on the linear axis. Edges in the input image and illumination invariant image domain are identified. The identified edges of the input image are compared to identify edges in the illumination invariant image domain. A determination is made whether a shadow edge is present in response to the comparison. A shadow-reduced image is generated for scene analysis by a vehicle vision-based system.
    • 提供了一种用于去除拍摄图像中的照明产生阴影的方法。 捕获的输入图像的每个像素绘制在二维对数图上。 确定多个颜色组的线性轴,其基本上与每个相应颜色组的相应照明方向正交。 每个绘制像素的对数色度值投影在轴上。 选择线性轴的取向以最小化照明效果并且在线性轴上的每个相应颜色集之间提供最佳间隔。 识别输入图像和照明不变图像域中的边缘。 将识别的输入图像的边缘进行比较,以识别照明不变图像域中的边缘。 确定响应于比较是否存在阴影边缘。 通过基于车辆视觉的系统生成用于场景分析的阴影缩小图像。