会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Double-radiant-source framework for container detecting system
    • 容器检测系统的双辐射源框架
    • US07215737B2
    • 2007-05-08
    • US10967698
    • 2004-10-15
    • Jianmin LiZhizhong LiangJianjun SuShangmin SunQing ZhangJing WanJianxin Wang
    • Jianmin LiZhizhong LiangJianjun SuShangmin SunQing ZhangJing WanJianxin Wang
    • G01N23/83
    • G01V5/0016
    • A double-radiant-source framework used for a radiation detecting system for containers, having a horizontal accelerator, a vertical accelerator and a gantry tower composed of a left vertical girder, a right vertical girder, an upper cross girder, and a lower cross girder. A horizontal collimator and accelerator, and a vertical collimator and accelerator, are fixed on the left vertical girder and the upper cross girder of the gantry tower, respectively, and emit radiation beams as two planes oriented parallel to each other. Detector modules are disposed inside the double-detector arm of the right vertical girder, and inside the upper cross girder and the lower cross girder, respectively, to receive the two emitted planes of radiation beams. The container detecting system can reduce the area covered by the scanning channel of the system, and make the transportation, installation and use convenient, and improve the quality of the detected images.
    • 用于容器辐射检测系统的双辐射源框架,具有水平加速器,垂直加速器和由左垂直梁,右垂直梁,上横梁和下横梁组成的龙门塔 。 水平准直器和加速器以及垂直准直器和加速器分别固定在龙门架塔的左侧垂直梁和上横梁上,并将辐射束作为彼此平行取向的两个平面发射。 检测器模块分别设置在右垂直梁的双检测臂内部,分别位于上横梁和下横梁内部,以接收辐射束的两个发射平面。 容器检测系统可以减少系统扫描通道覆盖的区域,使运输,安装和使用方便,提高检测图像的质量。
    • 2. 发明申请
    • Double-radiant-source framework for container detecting system
    • 容器检测系统的双辐射源框架
    • US20060018428A1
    • 2006-01-26
    • US10967698
    • 2004-10-15
    • Jianmin LiZhizhong LiangJianjun SuShangmin SunQing ZhangJing WanJianxin Wang
    • Jianmin LiZhizhong LiangJianjun SuShangmin SunQing ZhangJing WanJianxin Wang
    • G01N23/04
    • G01V5/0016
    • A double-radiant-source framework used for a container detecting system, which belongs to the technical field of radiation detection, having a horizontal accelerator, a vertical accelerator and a gantry tower composed of a left vertical girder, a right vertical girder, an upper cross girder, and a lower cross girder. A horizontal collimator and a vertical collimator are disposed in front of the frontal face each of the horizontal accelerator and the vertical accelerator. The horizontal collimator and the vertical collimator are fixed on the left vertical girder and the upper cross girder of the gantry tower, respectively. The radiation beams defined by the horizontal collimator and the vertical collimator are two planes oriented parallel to each other. A double-detector arm is disposed inside the right vertical girder of the gantry tower, and detector modules are disposed inside the double-detector arm for receiving the two different planes of radiation beams defined by and emitted from the horizontal collimator and the vertical collimator. Detector modules are disposed inside the upper cross girder and the lower cross girder respectively for receiving separately radiation beams defined by and emitted from the horizontal collimator and the vertical collimator. The container detecting system can reduce the area covered by the scanning channel of the system, and make the transportation, installation and use convenient, and improve the quality of the detected images.
    • 属于辐射检测技术领域的容器检测系统的双辐射源框架,具有水平加速器,垂直加速器和由左垂直梁,右垂直梁,上部 横梁和下横梁。 水平准直仪和垂直准直仪设置在每个水平加速器和垂直加速器的正面之前。 水平准直仪和垂直准直器分别固定在龙门架塔的左侧垂直梁和上横梁上。 由水平准直器和垂直准直器限定的辐射束是彼此平行取向的两个平面。 双检测器臂设置在龙门塔的右垂直梁内,检测器模块设置在双检测器臂的内部,用于接收由水平准直仪和垂直准直器限定和发射的辐射束的两个不同平面。 检测器模块分别设置在上横梁和下横梁的内侧,用于分别接收由水平准直仪和垂直准直仪定义和发射的辐射束。 容器检测系统可以减少系统扫描通道覆盖的区域,使运输,安装和使用方便,提高检测图像的质量。
    • 3. 发明申请
    • Discretized Physics-Based Models and Simulations of Subterranean Regions, and Methods For Creating and Using the Same
    • 基于离散物理的模型和地下区域的模拟,以及创建和使用它们的方法
    • US20130073272A1
    • 2013-03-21
    • US13388843
    • 2010-08-10
    • Jon M. WallaceHao HuangJing Wan
    • Jon M. WallaceHao HuangJing Wan
    • G06G7/48
    • E21B49/00E21B43/00G01V99/00
    • Methods for creating and using discretized physics-based models of subsurface regions, which may contain a hydrocarbon reservoir or other subsurface feature(s). The methods may include selecting a pre-solved model, applying a mesh to the pre-solved model, defining the shape of the subsurface region to be modeled, and transforming the pre-solved model, to which the mesh has been applied, to the shape of the subsurface region. In some methods, the pre-solved model is an idealized model. In some methods, the mesh is applied to a solution of potential field lines associated with the pre-solved model, and in some methods, the solution of potential field lines is a composite solution of a plurality of solutions of potential field lines. In some methods, one or more supershapes are used to define the shape of the subsurface region. In some methods, a hyperelastic strain deformation calculation is utilized for the transforming.
    • 用于创建和使用可能包含烃储层或其他地下特征的地下区域的基于离散物理的模型的方法。 所述方法可以包括选择预先解决的模型,将网格应用于预先确定的模型,定义待建模的地下区域的形状,以及将已应用网格的预先解决的模型转换为 地下区域的形状。 在一些方法中,预先解决的模型是一个理想化的模型。 在一些方法中,将网格应用于与预定模型相关联的潜在场线的解,并且在一些方法中,势场线的解是多个势场解的解的复合解。 在一些方法中,使用一个或多个超级形状来限定地下区域的形状。 在一些方法中,使用超弹性应变变形计算进行变换。
    • 10. 发明授权
    • Discretized physics-based models and simulations of subterranean regions, and methods for creating and using the same
    • 基于离散物理的模型和地下区域的模拟,以及创建和使用它们的方法
    • US09085957B2
    • 2015-07-21
    • US13388843
    • 2010-08-10
    • Jon M. WallaceHao HuangJing Wan
    • Jon M. WallaceHao HuangJing Wan
    • G06G7/48E21B49/00E21B43/00G01V99/00
    • E21B49/00E21B43/00G01V99/00
    • Methods for creating and using discretized physics-based models of subsurface regions, which may contain a hydrocarbon reservoir or other subsurface feature(s). The methods may include selecting a pre-solved model, applying a mesh to the pre-solved model, defining the shape of the subsurface region to be modeled, and transforming the pre-solved model, to which the mesh has been applied, to the shape of the subsurface region. In some methods, the pre-solved model is an idealized model. In some methods, the mesh is applied to a solution of potential field lines associated with the pre-solved model, and in some methods, the solution of potential field lines is a composite solution of a plurality of solutions of potential field lines. In some methods, one or more supershapes are used to define the shape of the subsurface region. In some methods, a hyperelastic strain deformation calculation is utilized for the transforming.
    • 用于创建和使用可能包含烃储层或其他地下特征的地下区域的基于离散物理的模型的方法。 所述方法可以包括选择预先解决的模型,将网格应用于预先确定的模型,定义待建模的地下区域的形状,以及将已应用网格的预先解决的模型转换为 地下区域的形状。 在一些方法中,预先解决的模型是一个理想化的模型。 在一些方法中,将网格应用于与预定模型相关联的潜在场线的解,并且在一些方法中,势场线的解是多个势场解的解的复合解。 在一些方法中,使用一个或多个超级形状来限定地下区域的形状。 在一些方法中,使用超弹性应变变形计算进行变换。