会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Nucleation control of diamond films by microlithographic patterning
    • 通过微光刻图案对金刚石膜的成核控制
    • US5242711A
    • 1993-09-07
    • US746458
    • 1991-08-16
    • Jeffrey D. DeNataleJohn F. FlintoffAlan B. HarkerPatrick J. HoodGerald D. Robinson
    • Jeffrey D. DeNataleJohn F. FlintoffAlan B. HarkerPatrick J. HoodGerald D. Robinson
    • B81B3/00B81C99/00C23C16/02C23C16/27G02B1/11G03F7/00
    • G02B1/118B81C1/00111B81C1/00198B81C1/0038C23C16/0227C23C16/0272C23C16/274C23C16/277G03F7/00B81B2201/035B81B2201/047B81C2201/0191B81C2201/056Y10T428/30
    • A high temperature resist process is combined with microlithographic patterning for the production of materials, such as diamond films, that require a high temperature deposition environment. A conventional polymeric resist process may be used to deposit a pattern of high temperature resist material. With the high temperature resist in place and the polymeric resist removed, a high temperature deposition process may proceed without degradation of the resist pattern. After a desired film of material has been deposited, the high temperature resist is removed to leave the film in the pattern defined by the resist. For diamond films, a high temperature silicon nitride resist can be used for microlithographic patterning of a silicon substrate to provide a uniform distribution of diamond nucleation sites and to improve diamond film adhesion to the substrate. A fine-grained nucleation geometry, established at the nucleation sites, is maintained as the diamond film is deposited over the entire substrate after the silicon nitride resist is removed. The process can be extended to form microstructures of fine-grained polycrystalline diamond, such as rotatable microgears and surface relief patterns, that have the desirable characteristics of hardness, wear resistance, thermal conductivity, chemical inertness, anti-reflectance, and a low coefficient of friction.
    • 将高温抗蚀剂工艺与用于生产需要高温沉积环境的材料(例如金刚石膜)的微光刻图案组合。 传统的聚合物抗蚀剂工艺可用于沉积耐高温材料的图案。 通过将高温抗蚀剂置于适当位置并除去聚合物抗蚀剂,可以进行高温沉积工艺而不降解抗蚀剂图案。 在已经沉积所需的材料膜之后,去除高温抗蚀剂以使膜以由抗蚀剂限定的图案离开。 对于金刚石膜,可以使用高温氮化硅抗蚀剂用于硅衬底的微光刻图案以提供金刚石成核位点的均匀分布并且改善金刚石膜对衬底的粘附。 在去除氮化硅抗蚀剂之后,在整个衬底上沉积金刚石膜,保持在成核位置建立的细晶粒成核几何形状。 该方法可以扩展以形成具有期望的硬度,耐磨性,导热性,化学惰性,抗反射性和低系数的细晶粒多晶金刚石的微观结构,例如可旋转的微观尺寸和表面浮雕图案 摩擦。
    • 4. 发明授权
    • Method of making a broadband backside illuminated MESFET with collecting
microlens
    • 制造具有收集微透镜的宽带背面照明MESFET的方法
    • US5811322A
    • 1998-09-22
    • US679880
    • 1996-07-15
    • Gerald D. Robinson
    • Gerald D. Robinson
    • H01L31/0232H01L31/112H01L21/84
    • H01L31/0232H01L31/1123
    • A composite-layer semiconductor device includes a gate above a host substrate, an n++ contact layer above the gate, and source and drain ohmic contacts applied to the n++ contact layer. The source and drain ohmic contacts define a central gate location which is recessed through the n++ contact layer toward the gate. The source and drain ohmic contacts create a barrier to chemical etching so that a current path below the central gate location can be incrementally recessed in repeated steps to precisely tailor the operating mode of the device for depletion or enhancement applications. The composite-layer semiconductor device is fabricated by depositing a gate on an n++ contact layer above a semi-insulating substrate. The semi-insulating substrate and gate are flipped onto an epoxy layer on the host substrate so that the gate is secured to the epoxy layer and the semi-insulating substrate presents an exposed backside. A portion of the exposed backside is removed. The source and drain ohmic contacts are applied to the exposed backside. The exposed backside is recessed at the central gate location to define the current path which connects the source and drain ohmic contacts.
    • 复合层半导体器件包括在主体衬底上方的栅极,栅极上方的n ++接触层以及施加到n ++接触层的源极和漏极欧姆接触。 源极和漏极欧姆触点限定了通过n ++接触层向栅极凹陷的中心栅极位置。 源极和漏极欧姆触点产生化学蚀刻的障碍,使得在中心栅极位置下方的电流路径可以以重复的步骤递增地凹入,以精确地定制用于耗尽或增强应用的器件的操作模式。 通过在半绝缘基板上方的n ++接触层上沉积栅极来制造复合层半导体器件。 半绝缘基板和栅极被翻转到主基板上的环氧树脂层上,使得栅极固定到环氧树脂层,半绝缘基板呈现暴露的背面。 暴露背面的一部分被去除。 源极和漏极欧姆接触应用于暴露的背面。 暴露的背面凹陷在中央门位置以限定连接源极和漏极欧姆接触的电流路径。
    • 6. 发明授权
    • Broadband backside illuminated MESFET with collecting microlens
    • 带收集微透镜的宽带背面照明MESFET
    • US6078070A
    • 2000-06-20
    • US4141
    • 1998-01-07
    • Gerald D. Robinson
    • Gerald D. Robinson
    • H01L31/0232H01L31/112H01L29/80H01L31/062
    • H01L31/0232H01L31/1123
    • A composite-layer semiconductor device includes a gate above a host substrate, an n++ contact layer above the gate, and source and drain ohmic contacts applied to the n++ contact layer. The source and drain ohmic contacts define a central gate location which is recessed through the n++ contact layer toward the gate. The source and drain ohmic contacts create a barrier to chemical etching so that a current path below the central gate location can be incrementally recessed in repeated steps to precisely tailor the operating mode of the device for depletion or enhancement applications. The composite-layer semiconductor device is fabricated by depositing a gate on an n++ contact layer above a semi-insulating substrate. The semi-insulating substrate and gate are flipped onto an epoxy layer on the host substrate so that the gate is secured to the epoxy layer and the semi-insulating substrate presents an exposed backside. A portion of the exposed backside is removed. The source and drain ohmic contacts are applied to the exposed backside. The exposed backside is recessed at the central gate location to define the current path which connects the source and drain ohmic contacts.
    • 复合层半导体器件包括在主体衬底上方的栅极,栅极上方的n ++接触层以及施加到n ++接触层的源极和漏极欧姆接触。 源极和漏极欧姆触点限定了通过n ++接触层向栅极凹陷的中心栅极位置。 源极和漏极欧姆触点产生化学蚀刻的障碍,使得在中心栅极位置下方的电流路径可以以重复的步骤递增地凹入,以精确地定制用于耗尽或增强应用的器件的操作模式。 通过在半绝缘基板上方的n ++接触层上沉积栅极来制造复合层半导体器件。 半绝缘基板和栅极被翻转到主基板上的环氧树脂层上,使得栅极固定到环氧树脂层,半绝缘基板呈现暴露的背面。 暴露背面的一部分被去除。 源极和漏极欧姆接触应用于暴露的背面。 暴露的背面凹陷在中央门位置以限定连接源极和漏极欧姆接触的电流路径。