会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Multi-channel data driven, real-time anti-money laundering system for electronic payment cards
    • 多渠道数据驱动,电子支付卡实时反洗钱系统
    • US08751399B2
    • 2014-06-10
    • US13549492
    • 2012-07-15
    • Jayashree S. KolhatkarSangita S. FatnaniYitao YaoKazuo Matsumoto
    • Jayashree S. KolhatkarSangita S. FatnaniYitao YaoKazuo Matsumoto
    • G06Q40/00
    • G06Q20/02G06Q20/28G06Q20/34G06Q20/4016G06Q20/405
    • Electronic payment card money laundering detection includes receiving real-time payment card transaction data from ingress channels and an egress channels of at least one payment card system through a first API; generating transactional profiles for each of at least payment cards, the ingress channel, the egress channels, and funding sources of the payment cards; in response to receiving transaction data for a current payment card transaction, evaluating the transaction data using a predictive algorithm that compares the transaction data to the transactional profiles to calculate a probabilistic money laundering score for the current transaction; evaluating the probabilistic money laundering score and current transaction data based on a set of rules to generate a suspicious activity report that recommends whether to approve or report the current transaction; and transmitting the suspicious activity report back to the payment card system and transmitting the suspicious activity report to an identified regulatory body.
    • 电子支付卡洗钱检测包括通过第一API从入口通道接收实时支付卡交易数据和至少一个支付卡系统的出口信道; 为至少支付卡,入口通道,出口通道和支付卡的资金来源中的每一个生成交易简档; 响应于接收当前支付卡交易的交易数据,使用将交易数据与交易简档进行比较以计算当前交易的概率性洗钱分数的预测算法来评估交易数据; 基于一组规则来评估概率洗钱分数和当前交易数据,以生成建议是否批准或报告当前交易的可疑活动报告; 并将可疑活动报告发送回支付卡系统,并将可疑活动报告发送给已识别的监管机构。
    • 2. 发明申请
    • Multi-Channel Data Driven, Real-Time Anti-Money Laundering System For Electronic Payment Cards
    • 电子支付卡的多渠道数据驱动,实时反洗钱系统
    • US20130018796A1
    • 2013-01-17
    • US13549492
    • 2012-07-15
    • Jayashree S. KolhatkarSangita S. FatnaniYitao YaoKazuo Matsumoto
    • Jayashree S. KolhatkarSangita S. FatnaniYitao YaoKazuo Matsumoto
    • G06Q20/40
    • G06Q20/02G06Q20/28G06Q20/34G06Q20/4016G06Q20/405
    • Electronic payment card money laundering detection includes receiving real-time payment card transaction data from ingress channels and an egress channels of at least one payment card system through a first API; generating transactional profiles for each of at least payment cards, the ingress channel, the egress channels, and funding sources of the payment cards; in response to receiving transaction data for a current payment card transaction, evaluating the transaction data using a predictive algorithm that compares the transaction data to the transactional profiles to calculate a probabilistic money laundering score for the current transaction; evaluating the probabilistic money laundering score and current transaction data based on a set of rules to generate a suspicious activity report that recommends whether to approve or report the current transaction; and transmitting the suspicious activity report back to the payment card system and transmitting the suspicious activity report to an identified regulatory body.
    • 电子支付卡洗钱检测包括通过第一API从入口通道接收实时支付卡交易数据和至少一个支付卡系统的出口信道; 为至少支付卡,入口通道,出口通道和支付卡的资金来源中的每一个生成交易简档; 响应于接收当前支付卡交易的交易数据,使用将交易数据与交易简档进行比较以计算当前交易的概率性洗钱分数的预测算法来评估交易数据; 基于一组规则来评估概率洗钱分数和当前交易数据,以生成建议是否批准或报告当前交易的可疑活动报告; 并将可疑活动报告发送回支付卡系统,并将可疑活动报告发送给已识别的监管机构。
    • 3. 发明申请
    • Multi-Channel Data Driven, Real-Time Fraud Determination System For Electronic Payment Cards
    • 电子支付卡的多渠道数据驱动,实时欺诈确定系统
    • US20130018795A1
    • 2013-01-17
    • US13549491
    • 2012-07-15
    • Jayashree S. KolhatkarSangita S. FatnaniYitao YaoKazuo Matsumoto
    • Jayashree S. KolhatkarSangita S. FatnaniYitao YaoKazuo Matsumoto
    • G06Q20/40
    • G06Q40/00G06Q20/00G06Q20/10G06Q20/4016
    • Exemplary embodiments for detecting electronic payment card fraud include receiving real-time payment card transaction data from ingress channels and an egress channels of at least one payment card system through a first application programming interface (API); generating transactional profiles for each of at least payment cards, the ingress channel, the egress channels, and funding sources of the payment cards; in response to receiving transaction data for a current payment card transaction, evaluating the transaction data using a predictive algorithm that compare the transaction data to the transactional profiles to calculate a probabilistic fraud score for the current transaction; evaluating the probabilistic fraud score and the current transaction data based on a set of rules to generate a recommendation to approve, decline or review the current transaction; and transmitting the recommendation back to the payment card system via a second API.
    • 用于检测电子支付卡欺诈的示例性实施例包括通过第一应用编程接口(API)从入口信道和至少一个支付卡系统的出口信道接收实时支付卡交易数据; 为至少支付卡,入口通道,出口通道和支付卡的资金来源中的每一个生成交易简档; 响应于接收当前支付卡交易的交易数据,使用将交易数据与交易简档进行比较以计算当前交易的概率性欺诈评分的预测算法来评估交易数据; 基于一组规则来评估概率欺诈评分和当前交易数据,以产生批准,拒绝或审查当前交易的建议; 以及经由第二API将所述推荐传送回所述支付卡系统。
    • 4. 发明授权
    • Multi-channel data driven, real-time fraud determination system for electronic payment cards
    • 多渠道数据驱动,电子支付卡实时欺诈判定系统
    • US08738529B2
    • 2014-05-27
    • US13549491
    • 2012-07-15
    • Jayashree S. KolhatkarSangita S. FatnaniYitao YaoKazuo Matsumoto
    • Jayashree S. KolhatkarSangita S. FatnaniYitao YaoKazuo Matsumoto
    • G06Q20/10G06Q20/00G06Q40/00
    • G06Q40/00G06Q20/00G06Q20/10G06Q20/4016
    • Exemplary embodiments for detecting electronic payment card fraud include receiving real-time payment card transaction data from ingress channels and an egress channels of at least one payment card system through a first application programming interface (API); generating transactional profiles for each of at least payment cards, the ingress channel, the egress channels, and funding sources of the payment cards; in response to receiving transaction data for a current payment card transaction, evaluating the transaction data using a predictive algorithm that compare the transaction data to the transactional profiles to calculate a probabilistic fraud score for the current transaction; evaluating the probabilistic fraud score and the current transaction data based on a set of rules to generate a recommendation to approve, decline or review the current transaction; and transmitting the recommendation back to the payment card system via a second API.
    • 用于检测电子支付卡欺诈的示例性实施例包括通过第一应用编程接口(API)从入口信道和至少一个支付卡系统的出口信道接收实时支付卡交易数据; 为至少支付卡,入口通道,出口通道和支付卡的资金来源中的每一个生成交易简档; 响应于接收当前支付卡交易的交易数据,使用将交易数据与交易简档进行比较以计算当前交易的概率性欺诈评分的预测算法来评估交易数据; 基于一组规则来评估概率欺诈评分和当前交易数据,以产生批准,拒绝或审查当前交易的建议; 以及经由第二API将所述推荐传送回所述支付卡系统。