会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Method and apparatus of robust neural temporal coding, learning and cell recruitments for memory using oscillation
    • 鲁棒的神经时间编码,使用振荡的记忆的学习和细胞募集的方法和装置
    • US09053428B2
    • 2015-06-09
    • US13187915
    • 2011-07-21
    • Jason Frank HunzingerVictor Hokkiu Chan
    • Jason Frank HunzingerVictor Hokkiu Chan
    • G06N3/08G06N3/04
    • G06N3/049
    • Certain aspects of the present disclosure support a technique for robust neural temporal coding, learning and cell recruitments for memory using oscillations. Methods are proposed for distinguishing temporal patterns and, in contrast to other “temporal pattern” methods, not merely coincidence of inputs or order of inputs. Moreover, the present disclosure propose practical methods that are biologically-inspired/consistent but reduced in complexity and capable of coding, decoding, recognizing, and learning temporal spike signal patterns. In this disclosure, extensions are proposed to a scalable temporal neural model for robustness, confidence or integrity coding, and recruitment of cells for efficient temporal pattern memory.
    • 本公开的某些方面支持用于使用振荡的存储器的鲁棒神经时间编码,学习和小区招募的技术。 提出了区分时间模式的方法,与其他“时间模式”方法相反,不仅仅是输入或输入顺序的一致性。 此外,本公开提出了具有生物启发/一致性但是复杂度降低且能够对时间尖峰信号模式进行编码,解码,识别和学习的实用方法。 在本公开中,提出了用于鲁棒性,置信度或完整性编码的可伸缩时间神经模型的扩展,以及用于有效时间模式存储器的小区的招募。
    • 9. 发明申请
    • LEARNING SPIKE TIMING PRECISION
    • 学习SPIKE时间精度
    • US20130339280A1
    • 2013-12-19
    • US13523574
    • 2012-06-14
    • Jason Frank HunzingerVictor Hokkiu Chan
    • Jason Frank HunzingerVictor Hokkiu Chan
    • G06N3/08
    • G06N3/08G06N3/049G06N3/088
    • Certain aspects of the present disclosure provide methods and apparatus for learning or determining delays between neuron models so that the uncertainty in input spike timing is accounted for in the margin of time between a delayed pre-synaptic input spike and a post-synaptic spike. In this manner, a neural network can correctly match patterns (even in the presence of significant jitter) and correctly distinguish between different noisy patterns. One example method generally includes determining an uncertainty associated with a first pre-synaptic spike time of a first neuron model for a pattern to be learned; and determining a delay based on the uncertainty, such that the delay added to a second pre-synaptic spike time of the first neuron model results in a causal margin of time between the delayed second pre-synaptic spike time and a post-synaptic spike time of a second neuron model.
    • 本公开的某些方面提供用于学习或确定神经元模型之间的延迟的方法和装置,使得在延迟的突触前输入尖峰和突触后尖峰之间的时间间隔中考虑输入尖峰时间的不确定性。 以这种方式,神经网络可以正确匹配模式(即使存在显着的抖动),并且正确区分不同的噪声模式。 一个示例性方法通常包括确定与要学习的模式的第一神经元模型的第一突触前尖峰时间相关联的不确定性; 以及基于所述不确定性确定延迟,使得添加到第一神经元模型的第二突触前尖刺时间的延迟导致延迟的第二突触前尖峰时间与突触后刺激时间之间的时间间隔 的第二个神经元模型。