会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • All-MOS precision differential delay line with delay a programmable
fraction of a master clock period
    • 全MOS精密差分延迟线具有延时可编程分频的主时钟周期
    • US5598364A
    • 1997-01-28
    • US560002
    • 1995-11-17
    • Kevin J. McCallJanos KovacsWyn Palmer
    • Kevin J. McCallJanos KovacsWyn Palmer
    • G11B20/10G11B20/22H03K5/135H03L7/099G11C13/00
    • H03L7/0805G11B20/10H03K5/135H03L7/0995
    • A write precompensation circuit includes a plurality of current-controlled delay buffers connected to form a delay line having selectable output taps. The precise delay of each delay buffer is controllable by a secondary control current derived from a master control current such that the precise delay is a precise percent of an oscillator period. The master control current is also used to control the period of a master write clock generated by a current-controlled ring oscillator of delay buffers. A write precompensation method includes steps of controlling current in delay buffers in a current-controlled ring oscillator used to generate a master write clock and current in delay buffers in a current-controlled delay line to maintain delays through delay buffers of the oscillator and the delay line in predetermined proportions to each other.
    • 写入预补偿电路包括多个电流控制延迟缓冲器,连接形成具有可选输出抽头的延迟线。 每个延迟缓冲器的精确延迟可以通过从主控制电流导出的次级控制电流来控制,使得精确的延迟是振荡器周期的精确百分比。 主控制电流也用于控制由延迟缓冲器的电流控制环形振荡器产生的主写时钟的周期。 写预补偿方法包括以下步骤:控制用于在电流控制延迟线中产生主写时钟和延迟缓冲器中的电流的电流控制环形振荡器中的延迟缓冲器中的电流,以通过振荡器的延迟缓冲器和延迟来维持延迟 以预定比例相互排列。
    • 4. 发明授权
    • All MOS single-ended to differential level converter
    • 所有MOS单端到差分电平转换器
    • US5541532A
    • 1996-07-30
    • US516384
    • 1995-08-17
    • Kevin J. McCall
    • Kevin J. McCall
    • H03K19/003H03K19/0185H03K19/094H03K19/0175
    • H03K19/018528H03K19/00384
    • An all MOS single-ended to differential level converter including: first and second source follower circuits each including first and second PMOS semiconductors each having a drain, a source and a gate electrode; a current source commonly connected to the drain electrodes of the first and second PMOS semiconductors; an input circuit for providing to one of the gate electrodes a single-ended input signal and to the other an inverted single-ended input signal; and first and second load impedances connected to the source electrodes of the first and second PMOS semiconductors, respectively, for providing output analog differential signals at a level which is a function of the load impedances and current source magnitude.
    • 所有MOS单端到差分电平转换器包括:第一和第二源极跟随器电路,每个包括第一和第二PMOS半导体,每个具有漏极,源极和栅极电极; 通常连接到第一和第二PMOS半导体的漏电极的电流源; 输入电路,用于向一个栅电极提供单端输入信号,另一个提供反相的单端输入信号; 以及分别连接到第一和第二PMOS半导体的源电极的第一和第二负载阻抗,用于以作为负载阻抗和电流源大小的函数的电平提供输出模拟差分信号。
    • 5. 发明授权
    • Method and circuit for determining signal amplitude
    • 确定信号幅度的方法和电路
    • US06748038B1
    • 2004-06-08
    • US09415545
    • 1999-10-08
    • Kevin J. McCall
    • Kevin J. McCall
    • H04L2708
    • H03M1/185
    • A method is provided for determining the actual amplitude of a signal relative to a predetermined amplitude. According to the method, two samples of the signal are squared to produce two squared samples, and the sum of the two squared samples minus the square of the predetermined amplitude is calculated to produce a difference of squares. A shift operation is performed on the difference of squares to determine a difference between the actual amplitude and the predetermined amplitude. In a preferred embodiment, two consecutive samples of the signal are taken at four times the frequency of the signal. Also provided is a circuit device that includes an A/D converter, a variable gain amplifier, and a feedback loop. The A/D converter converts an analog signal into a digital signal, and the variable gain amplifier adjusts the amplitude of the analog signal. The feedback loop controls the variable gain amplifier based on a difference between the amplitude of the analog signal and a predetermined amplitude. Further, the feedback loop calculates the difference by squaring two samples of the digital signal, summing the two squared samples and subtracting the square of the predetermined amplitude to produce a result, and shifting the result.
    • 提供了一种用于确定信号相对于预定幅度的实际振幅的方法。 根据该方法,将两个信号样本平方以产生两个平方样本,并且计算两个平方样本的和减去预定幅度的平方,得到平方差。 对平方差执行移位操作,以确定实际振幅和预定振幅之间的差。 在优选实施例中,信号的两个连续采样是信号频率的四倍。 还提供了包括A / D转换器,可变增益放大器和反馈回路的电路装置。 A / D转换器将模拟信号转换为数字信号,可变增益放大器调整模拟信号的幅度。 反馈回路基于模拟信号的幅度与预定幅度之差来控制可变增益放大器。 此外,反馈环路通过对数字信号的两个采样进行平方来计算差值,对两个平方采样求和并减去预定幅度的平方以产生结果,并移位结果。
    • 6. 发明授权
    • Transconductance filter control system
    • 跨导滤波器控制系统
    • US06172569B2
    • 2001-01-09
    • US09270399
    • 1999-03-16
    • Kevin J. McCallGeorge R. Spaulding, Jr.
    • Kevin J. McCallGeorge R. Spaulding, Jr.
    • H03F3191
    • H03H11/0422H03H11/54H03J3/04
    • A transconductance filter control system for compensating for drift in transconductance of a slave transconductance amplifier in a continuous time transconductance filter including: a master transconductance amplifier having an output which is a function of its transconductance and a control input for controlling the transconductance of the master transconductance amplifier; a tuning signal source for providing a tuning signal representative of a preselected characteristic of the transconductance filter; a comparing circuit, responsive to any deviation from a predetermined difference between the tuning signal and the output of the master transconductance amplifier, representative of a deviation of the transconductance of the master transconductance amplifier, for providing a compensation signal; and a circuit for applying the compensation signal to the control input of the master transconductance amplifier and to the control input of the slave transconductance amplifier in the transconductance filter to adjust the transconductance of both the master and slave transconductance amplifiers and restore the predetermined difference between the tuning signal and the output of the master transconductance amplifier.
    • 一种用于补偿连续时间跨导滤波器中从跨导放大器的跨导漂移的跨导滤波器控制系统,包括:具有作为其跨导的函数的输出的主跨导放大器和用于控制主跨导的跨导的控制输入 放大器 调谐信号源,用于提供表示跨导滤波器的预选特性的调谐信号; 比较电路,响应于调谐信号和主跨导放大器的输出之间的预定差异的任何偏差,代表主跨导放大器的跨导的偏差,用于提供补偿信号; 以及用于将补偿信号施加到主跨导放大器的控制输入端和跨导滤波器中的从跨导放大器的控制输入的电路,以调整主跨导放大器和从器件跨导放大器的跨导,并恢复 调谐信号和主跨导放大器的输出。
    • 7. 发明授权
    • High-speed, low power auto-zeroed sampling circuit
    • 高速低功耗自动归零采样电路
    • US5262685A
    • 1993-11-16
    • US778350
    • 1991-10-16
    • Michael J. DemlerKevin J. McCall
    • Michael J. DemlerKevin J. McCall
    • G11C27/02H03K5/24
    • G11C27/026H03K5/249
    • Auto-zeroing clocking signals, a first auto-zeroing clocking signal of comparatively-low frequency and duty cycle and a second auto-zeroing clocking signal of the same comparatively-low frequency but complementary and comparatively-high duty cycle, and a sampling clocking signal of comparatively-high frequency respectively initiate auto-zeroing of a circuit element subject to output offset error and data sampling of an A.C. input signal to a latch. The sampling of the A.C. input signal to the latch occurs at the comparatively-high frequency of the clocking signal during the "on" time of the comparatively-high duty cycle second auto-zeroing clocking signal of comparatively-low frequency enabling thereby to provide higher speed sampling than heretofore possible. The auto-zeroing of the circuit element subject to input offset error occurs during the "on" time of the comparatively-low duty cycle first auto-zeroing clocking signal of comparatively-low frequency enabling thereby to provide lower power sampling than heretofore possible. Typically, the circuit element is either an analog comparator or an operational amplifier, and the sampling circuit of the invention has exemplary utility in analog-to-digital (A/D) conversion.
    • 自动归零时钟信号,具有相对较低频率和占空比的第一自动归零时钟信号和具有相同较低频率但互补且相对较高占空比的相同低自适应时钟信号,以及采样时钟信号 相对高的频率分别启动电路元件的自动归零,该电路元件受到输出偏移误差的影响,并将AC输入信号的数据采样到锁存器。 在较低频率的比较高占空比的第二自动归零时钟信号的“接通”时间内,对锁存器的AC输入信号的采样发生在时钟信号的较高频率处,从而能够提供更高的 速度采样比以前可能。 受到输入偏移误差的电路元件的自动归零发生在相对低频率的相对低的占空比第一自动归零时钟信号的“导通”时间,从而能够提供比以前更低的功率采样。 通常,电路元件是模拟比较器或运算放大器,并且本发明的采样电路在模数(A / D)转换中具有示例性的用途。