会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Computing pose and/or shape of modifiable entities
    • 计算可修改实体的姿态和/或形状
    • US08724906B2
    • 2014-05-13
    • US13300542
    • 2011-11-18
    • Jamie Daniel Joseph ShottonAndrew William FitzgibbonJonathan James TaylorMatthew Darius Cook
    • Jamie Daniel Joseph ShottonAndrew William FitzgibbonJonathan James TaylorMatthew Darius Cook
    • G06K9/68G06K9/62
    • G06K9/00214G06T7/75G06T17/00
    • Computing pose and/or shape of a modifiable entity is described. In various embodiments a model of an entity (such as a human hand, a golf player holding a golf club, an animal, a body organ) is fitted to an image depicting an example of the entity in a particular pose and shape. In examples, an optimization process finds values of pose and/or shape parameters that when applied to the model explain the image data well. In examples the optimization process is influenced by correspondences between image elements and model points obtained from a regression engine where the regression engine may be a random decision forest. For example, the random decision forest may take elements of the image and calculate candidate correspondences between those image elements and model points. In examples the model, pose and correspondences may be used for control of various applications including computer games, medical systems, augmented reality.
    • 描述可修改实体的计算姿势和/或形状。 在各种实施例中,将实体(诸如人的手,持有高尔夫球杆,高尔夫球杆,动物,身体器官的高尔夫球手)的模型安装在描绘特定姿势和形状的实体的示例的图像上。 在示例中,优化过程找到姿态和/或形状参数的值,当应用于模型时,可以很好地解释图像数据。 在示例中,优化过程受图像元素和从回归引擎获得的模型点之间的对应性的影响,回归引擎可以是随机决策树。 例如,随机决策树可以采用图像的元素,并计算这些图像元素和模型点之间的候选对应关系。 在示例中,模型,姿态和对应可以用于控制各种应用,包括计算机游戏,医疗系统,增强现实。
    • 6. 发明申请
    • Computing Pose and/or Shape of Modifiable Entities
    • 可修改实体的计算姿势和/或形状
    • US20130129230A1
    • 2013-05-23
    • US13300542
    • 2011-11-18
    • Jamie Daniel Joseph ShottonAndrew William FitzgibbonJonathan James TaylorMatthew Darius Cook
    • Jamie Daniel Joseph ShottonAndrew William FitzgibbonJonathan James TaylorMatthew Darius Cook
    • G06K9/68
    • G06K9/00214G06T7/75G06T17/00
    • Computing pose and/or shape of a modifiable entity is described. In various embodiments a model of an entity (such as a human hand, a golf player holding a golf club, an animal, a body organ) is fitted to an image depicting an example of the entity in a particular pose and shape. In examples, an optimization process finds values of pose and/or shape parameters that when applied to the model explain the image data well. In examples the optimization process is influenced by correspondences between image elements and model points obtained from a regression engine where the regression engine may be a random decision forest. For example, the random decision forest may take elements of the image and calculate candidate correspondences between those image elements and model points. In examples the model, pose and correspondences may be used for control of various applications including computer games, medical systems, augmented reality.
    • 描述可修改实体的计算姿势和/或形状。 在各种实施例中,将实体(诸如人的手,持有高尔夫球杆,高尔夫球杆,动物,身体器官的高尔夫球手)的模型安装在描绘特定姿势和形状的实体的示例的图像上。 在示例中,优化过程找到姿态和/或形状参数的值,当应用于模型时,可以很好地解释图像数据。 在示例中,优化过程受图像元素和从回归引擎获得的模型点之间的对应性的影响,回归引擎可以是随机决策树。 例如,随机决策树可以采用图像的元素,并计算这些图像元素和模型点之间的候选对应关系。 在示例中,模型,姿态和对应可以用于控制各种应用,包括计算机游戏,医疗系统,增强现实。
    • 8. 发明授权
    • Distributed decision tree training
    • 分布式决策树训练
    • US08543517B2
    • 2013-09-24
    • US12797430
    • 2010-06-09
    • Jamie ShottonMihai-Dan BudiuAndrew William FitzgibbonMark FinocchioRichard E. MooreDuncan Robertson
    • Jamie ShottonMihai-Dan BudiuAndrew William FitzgibbonMark FinocchioRichard E. MooreDuncan Robertson
    • G06F15/18
    • G06K9/6282
    • A computerized decision tree training system may include a distributed control processing unit configured to receive input of training data for training a decision tree. The system may further include a plurality of data batch processing units, each data batch processing unit being configured to evaluate each of a plurality of split functions of a decision tree for respective data batch of the training data, to thereby compute a partial histogram for each split function, for each datum in the data batch. The system may further include a plurality of node batch processing units configured to aggregate the associated partial histograms for each split function to form an aggregated histogram for each split function for each of a subset of frontier tree nodes and to determine a selected split function for each frontier tree node by computing the split function that produces highest information gain for the frontier tree node.
    • 计算机化决策树训练系统可以包括配置成接收用于训练决策树的训练数据的输入的分布式控制处理单元。 该系统还可以包括多个数据批处理单元,每个数据批处理单元被配置为评估用于训练数据的相应数据批的决策树的多个分离函数中的每一个,从而计算每个 分割功能,用于数据批处理中的每个数据。 该系统可以进一步包括多个节点批量处理单元,其被配置为针对每个分割函数聚合相关联的部分直方图,以形成用于边界树节点的子集中的每一个的每个分割函数的聚合直方图,并且为每个分割函数确定每个 边缘树节点通过计算为边界树节点产生最高信息增益的分割函数。
    • 9. 发明申请
    • ANIMATING OBJECTS USING THE HUMAN BODY
    • 使用人体的动画对象
    • US20140035901A1
    • 2014-02-06
    • US13563313
    • 2012-07-31
    • Jiawen ChenShahram IzadiAndrew William Fitzgibbon
    • Jiawen ChenShahram IzadiAndrew William Fitzgibbon
    • G06T15/00
    • G06T13/40A63F13/10A63F13/525G06T1/20G06T13/00G06T13/80
    • Methods of animating objects using the human body are described. In an embodiment, a deformation graph is generated from a mesh which describes the object. Tracked skeleton data is received which is generated from sensor data and the tracked skeleton is then embedded in the graph. Subsequent motion which is captured by the sensor result in motion of the tracked skeleton and this motion is used to define transformations on the deformation graph. The transformations are then applied to the mesh to generate an animation of the object which corresponds to the captured motion. In various examples, the mesh is generated by scanning an object and the deformation graph is generated using orientation-aware sampling such that nodes can be placed close together within the deformation graph where there are sharp corners or other features with high curvature in the object.
    • 描述使用人体对物体进行动画化的方法。 在一个实施例中,从描述对象的网格生成变形图。 从传感器数据生成跟踪的骨架数据,然后将跟踪的骨架嵌入到图中。 由传感器捕获的随后的运动导致跟踪骨架的运动,并且该运动用于定义变形图上的变换。 然后将变换应用于网格以生成对应于所捕获的运动的对象的动画。 在各种示例中,通过扫描对象产生网格,并且使用取向感知采样生成变形图,使得节点可以在变形图中靠近放置,其中存在锐角或具有高曲率的其它特征。
    • 10. 发明申请
    • DISTRIBUTED DECISION TREE TRAINING
    • 分布式决策树培训
    • US20110307423A1
    • 2011-12-15
    • US12797430
    • 2010-06-09
    • Jamie ShottonMihai-Dan BudiuAndrew William FitzgibbonMark FinocchioRichard E. MooreDuncan Robertson
    • Jamie ShottonMihai-Dan BudiuAndrew William FitzgibbonMark FinocchioRichard E. MooreDuncan Robertson
    • G06F15/18G06K9/62
    • G06K9/6282
    • A computerized decision tree training system may include a distributed control processing unit configured to receive input of training data for training a decision tree. The system may further include a plurality of data batch processing units, each data batch processing unit being configured to evaluate each of a plurality of split functions of a decision tree for respective data batch of the training data, to thereby compute a partial histogram for each split function, for each datum in the data batch. The system may further include a plurality of node batch processing units configured to aggregate the associated partial histograms for each split function to form an aggregated histogram for each split function for each of a subset of frontier tree nodes and to determine a selected split function for each frontier tree node by computing the split function that produces highest information gain for the frontier tree node.
    • 计算机化决策树训练系统可以包括配置成接收用于训练决策树的训练数据的输入的分布式控制处理单元。 该系统还可以包括多个数据批处理单元,每个数据批处理单元被配置为评估用于训练数据的相应数据批的决策树的多个分离函数中的每一个,从而计算每个 分割功能,用于数据批处理中的每个数据。 该系统可以进一步包括多个节点批量处理单元,其被配置为针对每个分割函数聚合相关联的部分直方图,以形成用于边界树节点的子集中的每一个的每个分割函数的聚合直方图,并且为每个分割函数确定每个 边缘树节点通过计算为边界树节点产生最高信息增益的分割函数。