会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Generating and decoding graphical bar codes
    • 生成和解码图形条形码
    • US06722567B2
    • 2004-04-20
    • US09877516
    • 2001-06-07
    • Doron ShakedAvraham LevyJonathan Yen
    • Doron ShakedAvraham LevyJonathan Yen
    • G06K710
    • G06K7/1417G06K7/14G06K19/06037
    • Systems and methods for automatically generating and decoding a graphical bar code (i.e., an image that contains inconspicuous graphical modulations that encode embedded information) are described. In one aspect, an invertible graphical operation is applied between regions of a base image and information-encoding graphical templates that are selected from a predefined template set to produce a graphical bar code with regions from which graphical templates are recoverable by applying an inverse graphical operation between graphical bar code regions and corresponding base image regions. In another aspect, an invertible graphical operation is applied between regions of a graphical bar code and corresponding regions of a base image to produce a set of measurement blocks, and information-encoding graphical templates corresponding to the set of measurement blocks with the highest estimated probability is selected from a predefined template set.
    • 描述了用于自动生成和解码图形条形码(即,包含编码嵌入信息的不显眼图形调制的图像)的系统和方法。 在一个方面,在基本图像的区域和从预定义模板集合中选择的信息编码图形模板之间应用可逆图形操作以产生图形条形码,其中图形模板可通过应用反向图形操作 在图形条形码区域和相应的基本图像区域之间。 在另一方面,在图形条形码的区域和基本图像的对应区域之间应用可逆图形操作,以产生一组测量块,以及与具有最高估计概率的测量块集合对应的信息编码图形模板 从预定义的模板集中选择。
    • 4. 发明授权
    • Scalable, fraud resistant graphical payment indicia
    • 可扩展,防欺诈的图形支付标记
    • US06938017B2
    • 2005-08-30
    • US09728297
    • 2000-12-01
    • Jonathan YenChit Wei SawDoron ShakedAvraham Levy
    • Jonathan YenChit Wei SawDoron ShakedAvraham Levy
    • B41J5/30G06T1/00G07B17/00H04N1/387G06F17/60H04K1/00
    • G07B17/00508G06Q20/3672G07B2017/00443G07B2017/0058G07B2017/00588G07B2017/00637G07B2017/00709
    • Payment indicia generating schemes are described that enable users to customize the appearance of the payment indicium and to accommodate a wide variety of validation processing environments, while providing a substantial defense against fraudulent photocopy attack. In some embodiments, a corroborative digital token is generated from payment information, and a base image is modulated with a graphical encoding of the corroborative digital token to produce a payment indicium. In some embodiments, a payment indicium containing embedded payment information is rendered on a printing surface with a printing characteristic that degrades with photographic reproductions such that the embedded payment information is extractable from an original rendering of the payment indicium but is un-extractable from a photographic reproduction of an original rendering of the payment indicium. In some embodiments, payment information is encoded into a corroborative digital token based at least in part upon one or more variable encoding parameters, and a payment indicium containing the encoded payment information is rendered.
    • 描述支付标记生成方案,使得用户能够定制支付标记的外观并且适应各种各样的验证处理环境,同时提供对欺诈性复印攻击的实质防御。 在一些实施例中,从付款信息生成确认数字令牌,并且使用确认数字令牌的图形编码来调制基本图像以产生支付标记。 在一些实施例中,包含嵌入式支付信息的支付标记在打印表面上呈现,其印刷特性与照相复制品降级,使得嵌入的支付信息可从支付标记的原始呈现中提取,但不能从照相中提取 复制支付标记的原始呈现。 在一些实施例中,支付信息至少部分地基于一个或多个可变编码参数被编码为确认数字令牌,并且呈现包含编码支付信息的支付标记。
    • 5. 发明授权
    • Variational models for spatially dependent gamut mapping
    • 空间依赖色域映射的变分模型
    • US06873439B2
    • 2005-03-29
    • US10096305
    • 2002-03-13
    • Avraham LevyDoron Shaked
    • Avraham LevyDoron Shaked
    • B41J2/525G06T1/00H04N1/46H04N1/60B41B1/00G03F3/08
    • H04N1/6058
    • A variational model for spatially dependent gamut mapping is described that includes inputting a gamut constraint, choosing a one dimensional gamut projection scheme, including selecting a transform color coordinate system, computing transform equations, and verifying gamut conditions. The model also includes inputting an original image to be rendered, where the original image is in a given color coordinate system, transforming the gamut constraint, the image, and the transform equations to the transform color coordinate system, whereby a three dimensional function is transformed into a one dimensional quadratic functional, finding a minimum solution to the functional, and transforming a projected image in the transform color coordinate system into a color coordinate system of a rendering device.
    • 描述了用于空间依赖色域映射的变分模型,其包括输入色域约束,选择一维色域投影方案,包括选择变换色坐标系,计算变换方程和验证色域条件。 该模型还包括输入要渲染的原始图像,其中原始图像在给定的颜色坐标系中,将色域约束,图像和变换方程变换为变换色坐标系,由此三维函数被变换 变成一维二次函数,找到功能的最小解,并将变换色坐标系中的投影图像变换成呈现设备的色坐标系。
    • 6. 发明授权
    • Reducing halos in spatially dependent gamut mapping
    • 在空间依赖的色域映射中减少光晕
    • US06826304B2
    • 2004-11-30
    • US10096303
    • 2002-03-13
    • Avraham LevyDoron Shaked
    • Avraham LevyDoron Shaked
    • H04N160
    • H04N1/6058
    • A method and apparatus for color image processing using gamut mapping reduces halo artifacts by correcting terms in a gamut mapping algorithm. The color image may be represented by f, the in gamut image by g, the target gamut by C, and the gamut constraint by c. The method for reducing halo artifacts includes two correction steps. First a color distance term L2 in the gamut mapping algorithm is corrected. Second, a distance measure of an image gradient in the gamut mapping algorithm is corrected. The first correcting step comprises computing a function u=projectC(ƒ). The second correcting step comprises computing a scaled down function for f. Next, a function g(x,y) is determined that minimizes a functional comprising the color distance term and the image gradient term. The solution may be determined by iteration using a gradient descent operation by first initializing g0=projectC(ƒ), and then performing one or more iteration steps to compute g(x,y).
    • 使用色域映射进行彩色图像处理的方法和装置通过校正色域映射算法中的项来减少光晕伪影。 彩色图像可以由f表示,色域图像乘以g,目标色域为C,色域约束为c。 减少光晕伪影的方法包括两个校正步骤。 首先校正色域映射算法中的色彩距离项L2。 第二,校正色域映射算法中的图像梯度的距离度量。 第一校正步骤包括计算函数u = projectC(f)。 第二校正步骤包括计算f的缩小函数。 接下来,确定使包括颜色距离项和图像梯度项的功能最小化的函数g(x,y)。 通过首先初始化g0 = projectC(f),然后执行一个或多个迭代步骤来计算g(x,y),可以通过使用梯度下降操作的迭代来确定解。