会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Insulated wire
    • 绝缘电线
    • US06288342B1
    • 2001-09-11
    • US09460647
    • 1999-12-14
    • Isao UeokaMasaaki YamauchiMasaharu KurataYoshihiro NakazawaYuki MatsuuraHideyuki HashimotoHiromitu AsaiShinichi MatsubaraMakoto Takahashi
    • Isao UeokaMasaaki YamauchiMasaharu KurataYoshihiro NakazawaYuki MatsuuraHideyuki HashimotoHiromitu AsaiShinichi MatsubaraMakoto Takahashi
    • H01B1760
    • H01B7/292H01B3/306Y10T428/2947
    • An insulated wire having excellent fabricability causing no cracking in the film even after severe winding or rolling fabrication and also having heat resistance comparable to that of polyamideimide is disclosed, in which a first insulation layer of a thermosetting resin composition having a Tg of 250° C. or higher is formed on a conductor, on which a second insulation layer formed of a mixture of a thermosetting resin composition having a Tg of 250° C. or higher and a thermoplastic resin composition having a Tg of 140° C. or higher is formed, and in which the adhesion of the insulation film to the conductor is 30 g/mm or more, and the elongation at break of the insulation film is 40% or more, with the mixing ratio of the thermoplastic resin in the second insulation layer being from 30 to 70% by weight and the ratio T1/T2 of the thickness T1 of the first insulation layer to the thickness T2 of the second insulation layer being within a range of 5/95 to 40/60, and a residual amount of the solvent in an insulation film is 0.05% by weight or less of the total amount of the insulation film in a preferred embodiment.
    • 公开了一种绝缘线,其具有优异的可制造性,即使在严格的卷绕或轧制制造之后也不会发生裂纹,并且还具有与聚酰胺酰亚胺相当的耐热性,其中Tg为250℃的热固性树脂组合物的第一绝缘层 以上,由Tg为250℃以上的热固性树脂组合物和Tg为140℃以上的热塑性树脂组合物的混合物形成的第二绝缘层形成在导体上, 并且其中绝缘膜与导体的粘合力为30g / mm以上,绝缘膜的断裂伸长率为40%以上,第二绝缘层的热塑性树脂的混合比 为30〜70重量%,第一绝缘层的厚度T1与第二绝缘层的厚度T2的比T1 / T2在5/95〜40/60的范围内,残留量o 绝缘膜中的溶剂在优选实施方案中为绝缘膜总量的0.05重量%以下。
    • 4. 发明授权
    • Method for manufacturing polycrystal semiconductor film
    • 多晶半导体膜的制造方法
    • US5970368A
    • 1999-10-19
    • US939660
    • 1997-09-29
    • Hideyuki SasakiMichihiro OoseIsao SuzukiShiro TakenoMitsuhiro TomitaYoshito KawakyuYuki MatsuuraHiroshi Mitsuhashi
    • Hideyuki SasakiMichihiro OoseIsao SuzukiShiro TakenoMitsuhiro TomitaYoshito KawakyuYuki MatsuuraHiroshi Mitsuhashi
    • H01L21/20H01L21/205H01L29/04
    • H01L21/2026
    • There is disclosed a method for manufacturing a polycrystal semiconductor film comprising the steps of applying a high energy beam to a surface of a semiconductor film comprising an amorphous or a polycrystal semiconductor provided on a surface of a substrate to melt only the semiconductor film, and solidifying the film via a solid and liquid coexisting state to form a semiconductor film comprising a polycrystal semiconductor having a large grain diameter, by heating a liquid part using a difference in an electric resistance in the liquid and solid coexisting state to heat only the liquid part, and by extending the solidification time until the completion of solidifying of the molten liquid crystal film. Furthermore, as the base film of the semiconductor film, a material having a melting point of 1600.degree. C. and a thermal conductivity of 0.01 cal/cm.s..degree. C. is used to suppress heat dissipation from the molten liquid of the semiconductor to the substrate so that time until the complete solidification can be prolonged. Furthermore, the beam is irradiated so as to form a standing wave at a predetermined position of the surface of the semiconductor film to generate the heat density distribution having the same cycle with the standing wave and to melt the semiconductor film with the result that a polycrystal semiconductor film comprising a uniform and a large crystal grains by controlling the distribution of the crystal nuclei at the interface between the base film and the substrate.
    • 公开了一种制造多晶半导体膜的方法,包括以下步骤:将高能束施加到包括设置在基板表面上的非晶或多晶半导体的半导体膜的表面,以仅熔化半导体膜,并固化 通过固体和液体共存状态形成包含具有大粒径的多晶半导体的半导体膜,通过使用液体中的电阻差和固体共存状态加热液体部分以仅加热液体部分, 并延长凝固时间直到熔融液晶膜凝固完成。 此外,作为半导体膜的基膜,具有熔点为1600℃,导热率为0.01cal / cm 3的材料。 使用DEG来抑制从半导体的熔融液体到基板的散热,从而可以延长直到完全凝固的时间。 此外,照射光束以在半导体膜的表面的预定位置处形成驻波,以产生具有与驻波相同周期的热密度分布并熔化半导体膜,结果是多晶 通过控制在基膜和基板之间的界面处的晶核的分布而包含均匀和大的晶粒的半导体膜。