会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Fuel metering control system in internal combustion engine
    • 内燃机燃油计量控制系统
    • US5549092A
    • 1996-08-27
    • US507974
    • 1995-07-27
    • Yusuke HasegawaIsao KomoriyaShusuke AkazakiHidetaka MakiSatoru Abe
    • Yusuke HasegawaIsao KomoriyaShusuke AkazakiHidetaka MakiSatoru Abe
    • F02D45/00F02D41/04F02D41/18F02D41/32F02D41/34F02D41/10
    • F02D41/182F02D41/045F02D41/32F02D2200/0402
    • A system for controlling fuel metering in an internal combustion engine using a fluid dynamic model and the quantity of throttle-past air is determined therefrom. Based on the observation that the difference between the steady-state engine operating condition and the transient engine operating condition can be described as the difference in the effective throttle opening areas, the quantity of fuel injection is determined from the product of the ratio between the area and its first-order lag value and the quantity of fuel injection under the steady-state engine operating condition obtained by mapped data retrieval, and by subtracting the quantity of correction corresponding to the quantity of chamber-filling air. The effective throttle opening area's first order lag is calculated using a weight that varies with the engine speed, so that elongation or shortening of the TDC interval due to the decrease/increase of the engine speed will not affect the determination of the quantity of fuel injection.
    • 使用流体动力学模型来控制内燃机中的燃料计量的系统以及节流过去空气的量来确定。 基于将稳态发动机运转状态与暂态发动机运转状态之间的差可以描述为有效节气门开度面积的差异的观察结果,燃料喷射量根据区域之间的比率 以及其一阶滞后值和通过映射数据检索获得的稳态发动机运转状态下的燃料喷射量,并且减去与填充空气量相对应的校正量。 使用随发动机转速变化的重量来计算有效节气门开度面积的一阶滞后,使得由于发动机转速的降低/增加引起的TDC间隔的伸长或缩短不会影响燃料喷射量的确定 。
    • 7. 发明授权
    • Fuel metering control system in internal combustion engine
    • 内燃机燃油计量控制系统
    • US5349933A
    • 1994-09-27
    • US137344
    • 1993-10-18
    • Yusuke HasegawaShusuke AkazakiIsao KomoriyaHidetaka MakiToshiaki Hirota
    • Yusuke HasegawaShusuke AkazakiIsao KomoriyaHidetaka MakiToshiaki Hirota
    • F02D41/04F02D41/14F02D41/18F02D41/10
    • F02D41/182F02D41/045F02D41/1401F02D2041/1431F02D2041/1433F02D2200/0402
    • A system for controlling fuel metering in an internal combustion engine using a fluid dynamic model and the cylinder air flow past the throttle is determined therefrom. Based on the observation that the difference between a steady-state engine operating condition and a transient engine operating condition can be described as the difference in the effective throttle opening areas, the amount of fuel injection is determined from the product of the ratio between the areas and a basic fuel injection amount under the steady-state engine operating condition obtained by mapped data retrieval and by subtracting a correction amount corresponding to an air flow filling a chamber between the throttle and the cylinder from the product. Under steady-state engine operation, the correction amount becomes zero. In an embodiment, the first-order lag of a detected throttle opening is calculated and based on the value, various parameters including a pseudo manifold pressure are obtained so as to solve sensors' detection timing lag or a pressure sensor's detection lag.
    • 使用流体动力学模型来控制内燃机中的燃料计量的系统和通过油门的气缸气流被确定。 基于将稳态发动机运转状态与瞬时发动机运转状态之间的差可以描述为有效节气门开度面积的差异的观察结果,燃料喷射量根据区域之间的比率 以及在通过映射数据检索获得的稳态发动机运行状态下的基本燃料喷射量,并且从产品中减去与填充节气门和气缸之间的室的空气流相对应的校正量。 在稳态发动机运行下,校正量变为零。 在一个实施例中,计算检测到的节气门开度的一阶滞后,并且基于该值,获得包括伪歧管压力的各种参数,以便解决传感器的检测定时滞后或压力传感器的检测滞后。
    • 9. 发明授权
    • Fuel metering control system in internal combustion engine
    • 内燃机燃油计量控制系统
    • US5546907A
    • 1996-08-20
    • US507977
    • 1995-07-27
    • Isao KomoriyaYusuke HasegawaShusuke AkazakiHidetaka Maki
    • Isao KomoriyaYusuke HasegawaShusuke AkazakiHidetaka Maki
    • F02D45/00F02D13/02F02D41/04F02D41/18F02D41/32F02D41/34F02D41/10
    • F02D41/182F02D41/045F02D41/32F02D2200/0402
    • A system for controlling fuel metering in an internal combustion engine using a fluid dynamic model with the quantity of throttle-past air being determined therefrom. Based on the observation that the difference between the steady-state engine operating condition and the transient engine operating condition can be described as the difference in the effective throttle opening areas, the quantity of fuel injection is determined from the product of the ratio between the area and its first-order lag value and the quantity of fuel injection under the steady-state engine operating condition obtained by mapped data retrieval and by subtracting the quantity of correction corresponding to the quantity of chamber-filling air. A pseudo-manifold pressure is estimated and is used for calculating the effective throttle opening area and its first lag value. The pseudo-manifold pressure is corrected by atmospheric pressure, engine coolant water temperature, etc., so as to enhance estimation accuracy.
    • 一种用于使用流体动力学模型控制内燃机中的燃料计量的系统,其中确定了节流过去空气的量。 基于将稳态发动机运转状态与暂态发动机运转状态之间的差可以描述为有效节气门开度面积的差异的观察结果,燃料喷射量根据区域之间的比率 以及其一阶滞后值和通过映射数据检索获得的稳态发动机运转状态下的燃料喷射量,并减去与填充空气量相对应的校正量。 估计模拟歧管压力,并用于计算有效节气门开度面积及其第一滞后值。 假歧管压力由大气压力,发动机冷却水温度等进行校正,以提高估计精度。