会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • TECHNOLOGIES FOR MANAGING RESOURCE ALLOCATION WITH PHASE RESIDENCY DATA
    • 利用相位数据管理资源分配的技术
    • WO2018017275A1
    • 2018-01-25
    • PCT/US2017/038750
    • 2017-06-22
    • INTEL CORPORATION
    • BALLE, Susanne, M.KHANNA, RahulAHUJA, NishiGANGULI, Mrittika
    • H04L12/911H04L12/861G06F21/56
    • Technologies for allocating resources of a set of managed nodes to workloads based on resource utilization phase residencies include an orchestrator server to receive resource allocation objective data and determine an assignment of a set of workloads among the managed nodes. The orchestrator server is further to receive telemetry data from the managed nodes, determine, as a function of the telemetry data, phase residency data, determine, as a function of at least the phase residency data and the resource allocation objective data, an adjustment to the assignment of the workloads to increase an achievement of at least one of the resource allocation objectives without decreasing the achievement of any of the other resource allocation objectives, and apply the adjustment to the assignments of the workloads among the managed nodes as the workloads are performed.
    • 用于基于资源利用阶段驻留将一组被管理节点的资源分配给工作负载的技术包括协调器服务器以接收资源分配目标数据并确定被管理节点之间的一组工作负载的分配。 协调器服务器进一步接收来自被管理节点的遥测数据,根据遥测数据确定相位驻留数据,根据至少相位驻留数据和资源分配目标数据来确定 指派工作负载以增加至少一个资源分配目标的实现而不减少任何其他资源分配目标的实现,并且在执行工作负载时将调整应用于被管理节点之间工作负载的分配
    • 3. 发明申请
    • TECHNOLOGIES FOR EFFICIENTLY IDENTIFYING MANAGED NODES AVAILABLE FOR WORKLOAD ASSIGNMENTS
    • 有效识别可用于工作分配的管理节点的技术
    • WO2018017272A1
    • 2018-01-25
    • PCT/US2017/038726
    • 2017-06-22
    • INTEL CORPORATION
    • BALLE, Susanne M.KHANNA, RahulAHUJA, NishiGANGULI, Mrittika
    • G06F9/50
    • Technologies for identifying managed nodes available for workload assignments include an orchestrator server to assign workloads to the managed nodes and receive availability data from the managed nodes, indicative of a determination by each of the managed nodes as to availability of the managed node to receive an additional workload. The orchestrator server is also to receive telemetry data from the managed nodes, indicative of resource utilization by each of the managed nodes as the workloads are performed. The orchestrator server is also to determine, as a function of the availability data, a reduced set of available managed nodes for analysis, determine, as a function of the telemetry data, adjustments to the workload assignments to increase the resource utilization among the reduced set of managed nodes, and apply the determined adjustments to the reduced set of managed nodes as the workloads are performed.
    • 用于识别可用于工作负载分配的被管理节点的技术包括协调器服务器,用于将工作负载分配给被管理节点并从被管节点接收可用性数据,表示每个被管节点确定可用性 的受管节点接收额外的工作量。 协调器服务器还从受管节点接收遥测数据,指示每个受管节点在执行工作负载时的资源利用率。 协调器服务器还根据可用性数据确定用于分析的减少的可用被管理节点集合,根据遥测数据确定对工作负荷分配的调整以增加缩减集合之间的资源利用率 的受管节点,并在执行工作负载时将确定的调整应用于减少的受管节点集。
    • 8. 发明申请
    • POWER OPTIMIZATION FOR DISTRIBUTED COMPUTING SYSTEM
    • 分布式计算系统的功率优化
    • WO2014101093A1
    • 2014-07-03
    • PCT/CN2012/087820
    • 2012-12-28
    • INTEL CORPORATIONZHOU, XiaohuLI, Kevin Y.KHANNA, Rahul
    • ZHOU, XiaohuLI, Kevin Y.KHANNA, Rahul
    • G06F1/26
    • G06F1/3203G06F1/3206G06F1/3209G06F1/3234G06F1/329G06F9/4893
    • An embodiment includes determining a first power metric (e.g., memory module temperature) corresponding to a group of computing nodes that includes first and second computing nodes; and distributing a computing task to a third computing node (e.g., load balancing) in response to the determined first power metric; wherein the third computing node is located remotely from the first and second computing nodes. The first power metric may be specific to the group of computing nodes and is not specific to either of the first and second computing nodes. Such an embodiment may leverage knowledge of computing node group behavior, such as power consumption, to more efficiently manage power consumption in computing node groups. This "power tuning" may rely on data taken at the "silicon level" (e.g., an individual computing node such as a server) and/or a large group level (e.g., data center). Other embodiments are described herein.
    • 实施例包括确定与包括第一和第二计算节点的一组计算节点相对应的第一功率量度(例如,存储器模块温度); 以及响应于所确定的第一功率量度将计算任务分配到第三计算节点(例如,负载平衡); 其中所述第三计算节点位于远离所述第一和第二计算节点的位置。 第一功率度量可以是该组计算节点特有的,并且不是特定于第一和第二计算节点中的任一个。 这样的实施例可以利用计算节点组行为(例如功耗)的知识来更有效地管理计算节点组中的功耗。 这种“功率调谐”可以依赖于在“硅层”(例如,诸如服务器的单个计算节点)和/或大组级别(例如,数据中心)获取的数据。 本文描述了其它实施例。