会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明专利
    • DE3688231T2
    • 1993-11-04
    • DE3688231
    • 1986-08-22
    • IBM
    • LU NICKY CHAU-CHUN
    • H01L27/10G11C11/34H01L21/74H01L21/822H01L21/8242H01L27/00H01L27/108H01L21/82
    • Dynamic random access memory (DRAM) devices are described wherein individual cells, including an access transistor and a storage capacitor are formed on a single-crystal semiconductor chip, and more particularly a three-dimensional dynamic random access memory (DRAM) device structure is described having a single-crystal access transistor stacked on top of a trench capacitor. A fabrication method for such devices is also described wherein crystallisation seeds are provided by the single-crystal semiconductor area surrounding the cell and/or from the vertical sidewalls of the trench and wherein the access transistor is isolated by insulator. In the structure, a trench is located in a p+ type substrate containing heavily doped N+ polysilicon. A composite film of SiO₂/Si₃N₄/SiO₂ is provided for the capacitor storage insulator. A thin layer of SiO₂ is disposed over the polysilicon. A lightly doped p-type epi silicon layer is located over the substrate and SiO₂ layer. The access transistor for the memory cell is located on top of the trench capacitor. An N+ doped material connects the source region of the transistor to the polysilicon inside the trench. A medium doped p-region on top of the trench surface may be provided in case there is any significant amount of leakage current along the trench surface.
    • 7. 发明专利
    • Voltage boosting circuits for dynamic memories
    • HK203796A
    • 1996-11-15
    • HK203796
    • 1996-11-07
    • IBM
    • DHONG SANG HOOHWANG WEILU NICKY CHAU-CHUN
    • G11C11/408H03K5/02G11C11/407
    • An improved wordline boost clock circuit that can be used in high speed DRAM circuits requires only one boost capacitor (42) and discharges the wordlines faster, thus improving the DRAM access time. The basic feature of the clock circuit is in the floating gate structure of the NMOS device which drives the load to negative during the boosting. In a first embodiment of the clock (Fig. 2), the gate of a first device (24) is connected to a first node (26) through a second device (28). A second node (30), connected to a wordline, is discharged through the first (24) and a third (32) device when a third node (36) is high with a fourth node (38) low. After a sufficient discharge of the second node (30), the fourth node (38) is pulled to VDD turning the second device (28) on and a fourth device (40) off. The first (NMOS) transistor (24) has its gate and drain connected together and forms a diode. When a boost capacitor (42) pulls the first node (26) down to negative, the first device (24) stays completely off because of its diode configuration and the second node (30) is pulled to negative through the third device (32). In a second embodiment (Fig. 3), a first device (24) is connected between a boost capacitor and a second node (30). The load is discharged through a third device (32) with a fourth device (40) on but a first (24) and second device (28) off. After a sufficient discharge of the load, a fourth device (40) is turned off but a second device (28) is turned on, making the third device (32) a diode. When a fifth node (74) is pulled to ground, the second node 30 is pulled down to negative with the first device (24) on. In the second embodiment circuit the load discharges through only one NMOS device (32) and consequently discharges faster than the circuit of the first embodiment.
    • 8. 发明专利
    • DE3688231D1
    • 1993-05-13
    • DE3688231
    • 1986-08-22
    • IBM
    • LU NICKY CHAU-CHUN
    • H01L27/10G11C11/34H01L21/74H01L21/822H01L21/8242H01L27/00H01L27/108H01L21/82
    • Dynamic random access memory (DRAM) devices are described wherein individual cells, including an access transistor and a storage capacitor are formed on a single-crystal semiconductor chip, and more particularly a three-dimensional dynamic random access memory (DRAM) device structure is described having a single-crystal access transistor stacked on top of a trench capacitor. A fabrication method for such devices is also described wherein crystallisation seeds are provided by the single-crystal semiconductor area surrounding the cell and/or from the vertical sidewalls of the trench and wherein the access transistor is isolated by insulator. In the structure, a trench is located in a p+ type substrate containing heavily doped N+ polysilicon. A composite film of SiO₂/Si₃N₄/SiO₂ is provided for the capacitor storage insulator. A thin layer of SiO₂ is disposed over the polysilicon. A lightly doped p-type epi silicon layer is located over the substrate and SiO₂ layer. The access transistor for the memory cell is located on top of the trench capacitor. An N+ doped material connects the source region of the transistor to the polysilicon inside the trench. A medium doped p-region on top of the trench surface may be provided in case there is any significant amount of leakage current along the trench surface.
    • 10. 发明专利
    • BR8803628A
    • 1989-02-14
    • BR8803628
    • 1988-07-20
    • IBM
    • HWANG WEILU NICKY CHAU-CHUN
    • H01L27/10H01L21/822H01L21/8242H01L27/04H01L27/108H01L29/78G11C11/34G11C11/21
    • A new high density vertical trench transistor and trench capacitor DRAM (dynamic-random-access memory) cell is described incorporating a wafer with a semiconductor substrate (10) and an epitaxial layer (10) thereon including a vertical transistor (14) disposed in a shallow trench (100) stacked above and self-aligned with a capacitor in a deep trench (16). The stacked vertical transistor (4) has a channel partly on the horizontal surface and partly along the shallow trench sidewalls. The drain of the access transistor (14) is a lightly-doped drain structure (21) connected to a bitline element (22). The source (24) of the transistor, located at the bottom of the transistor trench (100) and on top of the center of the trench capacitor (16), is self-aligned and connected to polysilicon (28) contained inside the trench capacitor. Three sidewalls of the access transistor (14) are surrounded by thick oxide isolation (50) and the remaining one side is connected to drain and bitline contacts. The memory cell is located inside an n-well (26) and uses the n-well and heavily-doped substrate (10) as the capacitor counter-electrode plate. The cell storage node is the polysilicon (28) inside the trench capacitor. The fabrication method includes steps for growing epitaxial layers wherein an opening (100) is left which serves as the shallow trench access transistor region and provides self-alignment with the deep trench storage capacitor.