会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method and generator for characterizing an oscillatory system
    • US12072363B2
    • 2024-08-27
    • US17626615
    • 2020-07-15
    • Herrmann Ultraschalltechnik Gmbh & Co. KG
    • Gabriel ErtzJens TwiefelJorg Wallaschek
    • G01R29/22B06B1/02B06B1/06G01R27/26
    • G01R27/2605B06B1/0253B06B1/06B06B2201/72
    • The present invention relates to a method for determining at least one physical characteristic value of an electromechanical oscillatory system, which comprises a piezoelectric element and at least one additional element coupled, with respect to oscillation, to the piezoelectric element, the piezoelectric element having an electrode and a counter electrode. The method comprises the following steps: (a) applying an electrical alternating voltage between the electrode and the counter electrode for the duration of an excitation interval in order to induce mechanical oscillation of the oscillatory system or of a sub-system of the oscillatory system, so that after the excitation interval has expired, the oscillatory system or the sub-system performs a free oscillation without excitation, (b) after the end of the excitation and during the free oscillation of the oscillatory system or of the sub-system without excitation: (i) measuring a time curve of a voltage U between the electrode and the counter electrode, or (ii) short-circuiting the electrode and the counter electrode with a line and measuring a time curve of a current I through the line, and (c) determining the at least one physical characteristic value of the electromechanical oscillatory system from the time curve of the voltage U, which time curve was measured in step b) i), or the time curve of the current I, which time curve was measured in step b) ii).
    • 5. 发明申请
    • Method And Generator For Characterizing An Oscillatory System
    • US20220252649A1
    • 2022-08-11
    • US17626615
    • 2020-07-15
    • Herrmann Ultraschalltechnik GmbH & Co. KG
    • Gabriel ErtzJens TwiefelJorg Wallaschek
    • G01R27/26B06B1/02B06B1/06
    • The present invention relates to a method for determining at least one physical characteristic value of an electromechanical oscillatory system, which comprises a piezoelectric element and at least one additional element coupled, with respect to oscillation, to the piezoelectric element, the piezoelectric element having an electrode and a counter electrode. The method comprises the following steps: (a) applying an electrical alternating voltage between the electrode and the counter electrode for the duration of an excitation interval in order to induce mechanical oscillation of the oscillatory system or of a sub-system of the oscillatory system, so that after the excitation interval has expired, the oscillatory system or the sub-system performs a free oscillation without excitation, (b) after the end of the excitation and during the free oscillation of the oscillatory system or of the sub-system without excitation: (i) measuring a time curve of a voltage U between the electrode and the counter electrode, or (ii) short-circuiting the electrode and the counter electrode with a line and measuring a time curve of a current I through the line, and (c) determining the at least one physical characteristic value of the electromechanical oscillatory system from the time curve of the voltage U, which time curve was measured in step b) i), or the time curve of the current I, which time curve was measured in step b) ii).
    • 6. 发明授权
    • Ultrasonic vibration unit with damping
    • US11376630B2
    • 2022-07-05
    • US16765228
    • 2018-11-19
    • Herrmann Ultraschalltechnik GmbH & Co. KG
    • Gabriel ErtzJens TwiefelJorg WallaschekUlrich Vogler
    • B29C65/00B06B3/02
    • The present invention concerns an ultrasonic vibration unit having a converter (1) for converting an electric ac voltage into a mechanical ultrasonic vibration and a sonotrode which is vibrationally coupled to the converter (1), wherein the sonotrode and the converter (1) are matched to each other in such a way that the ultrasonic vibration unit can vibrate with a natural frequency f, in which a standing longitudinal wave having at least one vibration node and at least two vibration antinodes is formed within the ultrasonic vibration unit. To provide an ultrasonic vibration unit in which the parasitic vibrations which usually occur in operation with a working frequency are slight or do not occur, wherein at the same time the actual working frequency is not attenuated, it is proposed according to the invention that there is provided a damp vibration absorber unit (2) connected to the ultrasonic vibration unit by way of a coupling element (3), wherein the coupling element (3) is connected to the ultrasonic vibration unit at a vibration node, wherein the vibration absorber unit (2) is connected to a damping element (4) which is so adapted that it damps a vibration of the vibration absorber unit (2).