会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Monitoring of film characteristics during plasma-based semi-conductor processing using optical emission spectroscopy
    • 使用光发射光谱法监测等离子体半导体处理期间的膜特性
    • US06633391B1
    • 2003-10-14
    • US09708258
    • 2000-11-07
    • Hakeem OluseyiMoshe Sarfaty
    • Hakeem OluseyiMoshe Sarfaty
    • G01N2173
    • G01N21/71
    • A method and system to monitor characteristics of films by sensing the spectral emissions of a plasma to which the films are exposed. As a result, the method includes sensing optical energy produced by the plasma. The optical energy has a plurality of spectral bands associated therewith, a subset of which is identified as including information corresponding to the film characteristics. The film characteristics are then measured as a function of this information. To increase the accuracy of the measurements, in one embodiment of the present invention a subgroup of the plurality of spectral bands is observed that has data associated that is substantially independent of the characteristics of interest. The characteristics are then measured as a function of both the information and the data.
    • 通过感测膜暴露于其中的等离子体的光谱发射来监测膜的特性的方法和系统。 结果,该方法包括感测由等离子体产生的光能。 光能具有与其相关联的多个光谱带,其一部分被识别为包括对应于胶片特性的信息。 然后根据该信息测量胶片特性。 为了提高测量的准确度,在本发明的一个实施例中,观察到具有与感兴趣特征基本上独立的数据相关联的多个频谱带的子组。 然后,根据信息和数据的不同,测量特征。
    • 2. 发明授权
    • Method and apparatus employing optical emission spectroscopy to detect a fault in process conditions of a semiconductor processing system
    • 采用光发射光谱法检测半导体处理系统的工艺条件故障的方法和装置
    • US06603538B1
    • 2003-08-05
    • US09721403
    • 2000-11-21
    • Hakeem OluseyiMoshe Sarfaty
    • Hakeem OluseyiMoshe Sarfaty
    • G01N2162
    • G01N21/73
    • A method and an apparatus system feature detecting faults in process conditions of a plasma-based semiconductor processing system by sensing the spectral emissions of the plasma. As a result, the method includes sensing optical energy produced by the plasma and identifying the fault in the process conditions as a function of one or more of the plurality of spectral bands. To that end, the apparatus includes a detector in optical communication with the processing chamber to sense optical energy generated by the plasma, and a spectrum analyzer, in electrical communication with the optical detector. The spectrum analyzer resolves the spectral bands and produces information corresponding thereto. A processor is in electrical communication with the spectrum analyzer, and a memory is in electrical communication with the processor. The memory includes a computer-readable medium having a computer-readable program embodied therein that controls the system to carry-out the method.
    • 一种通过感测等离子体的光谱发射来检测基于等离子体的半导体处理系统的处理条件中的故障的方法和装置系统。 结果,该方法包括感测由等离子体产生的光能并且根据多个光谱带中的一个或多个的功能识别处理条件中的故障。 为此,该装置包括与处理室光学通信的检测器,用于感测由等离子体产生的光能,以及与光学检测器电连通的频谱分析仪。 频谱分析仪解析频谱带并产生与之对应的信息。 处理器与频谱分析仪电气通信,并且存储器与处理器电通信。 存储器包括具有其中体现的计算机可读程序的计算机可读介质,其控制系统执行该方法。
    • 3. 发明授权
    • Method of etching tungsten or tungsten nitride electrode gates in semiconductor structures
    • 在半导体结构中蚀刻钨或氮化钨电极栅的方法
    • US06440870B1
    • 2002-08-27
    • US09755522
    • 2001-01-05
    • Padmapani NallanHakeem Oluseyi
    • Padmapani NallanHakeem Oluseyi
    • H01L2100
    • H01L21/32136C23F4/00H01L21/28079H01L21/28088H01L21/28123
    • The present invention relates to a method of etching tungsten or tungsten nitride in semiconductor structures, and particularly to the etching of gate electrodes which require precise control over the etching process. We have discovered a method of etching tungsten or tungsten nitride which permits precise etch profile control while providing excellent selectivity, of at least 175:1, for example, in favor of etching tungsten or tungsten nitride rather than an adjacent oxide layer. Typically, the oxide is selected from silicon oxide, silicon oxynitride, tantalum pentoxide, zirconium oxide, and combinations thereof. The method appears to be applicable to tungsten or tungsten nitride, whether deposited by physical vapor deposition (PVD) or chemical vapor deposition (CVD). In particular, an initial etch chemistry, used during the majority of the tungsten or tungsten nitride etching process (the main etch), employs the use of a plasma source gas where the chemically functional etchant species are generated from a combination of sulfur hexafluoride (SF6) and nitrogen (N2), or in the alternative, from a combination of nitrogen trifluoride (NF3), chlorine (Cl2), and carbon tetrafluoride (CF4). Toward the end of the main etching process, a second chemistry is used in which the chemically functional etchant species are generated from Cl2 and O2. This final portion of the etch process may be referred to as an “overetch” process, since etching is carried out to at least the surface underlying the tungsten or tungsten nitride. However, this second etch chemistry may optionally be divided into two steps, where the plasma source gas oxygen content and plasma source power are increased in the second step.
    • 本发明涉及一种在半导体结构中蚀刻钨或氮化钨的方法,特别涉及要蚀刻工艺精确控制的栅电极的蚀刻。 我们已经发现了蚀刻钨或氮化钨的方法,其允许精确的蚀刻轮廓控制,同时提供至少175:1的优异选择性,例如有利于蚀刻钨或氮化钨而不是相邻的氧化物层。 通常,氧化物选自氧化硅,氮氧化硅,五氧化二钽,氧化锆及其组合。 该方法似乎适用于通过物理气相沉积(PVD)或化学气相沉积(CVD)沉积的钨或氮化钨。 特别地,在大多数钨或氮化钨蚀刻工艺(主蚀刻)期间使用的初始蚀刻化学使用等离子体源气体,其中化学功能蚀刻剂物质是由六氟化硫(SF 6 )和氮(N 2),或者替代地,来自三氟化氮(NF 3),氯(Cl 2)和四氟化碳(CF 4)的组合。 在主蚀刻过程结束时,使用第二种化学成分,其中化学功能的蚀刻剂物质由Cl2和O2产生。 蚀刻工艺的最后部分可被称为“过蚀刻”工艺,因为至少对钨或氮化钨的表面进行蚀刻。 然而,该第二蚀刻化学可以可选地分为两个步骤,其中在第二步骤中等离子体源气体氧含量和等离子体源功率增加。
    • 4. 发明授权
    • Method of etching tungsten or tungsten nitride electrode gates in semiconductor structures
    • 在半导体结构中蚀刻钨或氮化钨电极栅的方法
    • US06423644B1
    • 2002-07-23
    • US09614396
    • 2000-07-12
    • Padmapani NallanHakeem Oluseyi
    • Padmapani NallanHakeem Oluseyi
    • H01L2100
    • C23F4/00H01L21/28123H01L21/32136
    • The present invention relates to a method of etching tungsten or tungsten nitride in semiconductor structures, and particularly to the etching of gate electrodes which require precise control over the etching process. We have discovered a method of etching tungsten or tungsten nitride which permits precise etch profile control while providing excellent selectivity, of at least 175:1, for example, in favor of etching tungsten or tungsten nitride rather than an adjacent oxide layer. Typically the oxide is selected from silicon oxide, silicon oxynitride, tantalum oxide, zirconium oxide, and combinations thereof. The method appears to be applicable to tungsten or tungsten nitride, whether deposited by physical vapor deposition (PVD) of chemical vapor deposition (CVD). In particular, an initial etch chemistry, used during the majority of the tungsten or tungsten nitride etching process (the main etch), employs the use of a plasma source gas where the chemically functional etchant species are generated from a combination of sulfur hexafluoride (SF6) and nitrogen (N2), or in the alternative, from a combination of nitrogen trifluoride (NF3), chlorine (Cl2) and carbon tetrafluoride (CF4). Toward the end of the main etching process, a second chemistry is used in which the chemically functional etchant species are generated from Cl2 and O2. This final portion of the etch process may be referred to as an “overetch” process, since etching is carried out to at least the surface underlying the tungsten or tungsten nitride. However, this second etch chemistry may optionally be divided into two steps, where the plasma source gas oxygen content and plasma source power are increased in the second step.
    • 本发明涉及一种在半导体结构中蚀刻钨或氮化钨的方法,特别涉及要蚀刻工艺精确控制的栅电极的蚀刻。 我们已经发现了蚀刻钨或氮化钨的方法,其允许精确的蚀刻轮廓控制,同时提供至少175:1的优异选择性,例如有利于蚀刻钨或氮化钨而不是相邻的氧化物层。 通常,氧化物选自氧化硅,氮氧化硅,氧化钽,氧化锆及其组合。 该方法似乎适用于通过化学气相沉积(CVD)的物理气相沉积(PVD)沉积的钨或氮化钨。 特别地,在大多数钨或氮化钨蚀刻工艺(主蚀刻)期间使用的初始蚀刻化学使用等离子体源气体,其中化学功能蚀刻剂物质是由六氟化硫(SF 6 )和氮(N 2),或者替代地,来自三氟化氮(NF 3),氯(Cl 2)和四氟化碳(CF 4)的组合。 在主蚀刻过程结束时,使用第二种化学成分,其中化学功能的蚀刻剂物质由Cl2和O2产生。 蚀刻工艺的最后部分可被称为“过蚀刻”工艺,因为至少对钨或氮化钨的表面进行蚀刻。 然而,该第二蚀刻化学可以可选地分为两个步骤,其中在第二步骤中等离子体源气体氧含量和等离子体源功率增加。