会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • LEVERAGING TEMPORAL CONTEXTUAL AND ORDERING CONSTRAINTS FOR RECOGNIZING COMPLEX ACTIVITIES IN VIDEO
    • 利用时间上下文和订购限制来识别视频中的复杂活动
    • WO2008076587A3
    • 2008-08-07
    • PCT/US2007085273
    • 2007-11-20
    • HONDA MOTOR CO LTDLIM JONGWOOLAXTON BENJAMIN
    • LIM JONGWOOLAXTON BENJAMIN
    • G06K9/00
    • G06K9/00335
    • A system (and a method) are disclosed for recognizing and representing activities in a video sequence. The system includes an activity dynamic Bayesian network (ADBN), an object/action dictionary, an activity inference engine and a state output unit. The activity dynamic Bayesian network encodes the prior information of a selected activity domain. The prior information of the selected activity domain describes the ordering, temporal constraints and contextual cues among the expected actions. The object/action dictionary detects activities in each frame of the input video stream, represents the activities hierarchically, and generates an estimated observation probability for each detected action. The activity inference engine estimates a likely activity state for each frame based on the evidence provided by the object/action dictionary and the ADBN. The state output unit outputs the likely activity state generated by the activity inference engine.
    • 公开了用于识别和表示视频序列中的活动的系统(和方法)。 该系统包括活动动态贝叶斯网络(ADBN),对象/动作字典,活动推断引擎和状态输出单元。 活动动态贝叶斯网络对所选活动域的先前信息进行编码。 所选活动领域的先验信息描述预期行动中的排序,时间限制和上下文线索。 对象/动作字典检测输入视频流的每个帧中的活动,分层地表示活动,并为每个检测到的动作生成估计的观察概率。 活动推理引擎根据对象/动作字典和ADBN提供的证据估计每帧的可能活动状态。 状态输出单元输出由活动推理引擎生成的可能的活动状态。