会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Tied and Reduced RNN-T
    • US20220310071A1
    • 2022-09-29
    • US17330446
    • 2021-05-26
    • Google LLC
    • Rami BotrosTara Sainath
    • G10L15/16G10L15/08
    • A RNN-T model includes a prediction network configured to, at each of a plurality of times steps subsequent to an initial time step, receive a sequence of non-blank symbols. For each non-blank symbol the prediction network is also configured to generate, using a shared embedding matrix, an embedding of the corresponding non-blank symbol, assign a respective position vector to the corresponding non-blank symbol, and weight the embedding proportional to a similarity between the embedding and the respective position vector. The prediction network is also configured to generate a single embedding vector at the corresponding time step. The RNN-T model also includes a joint network configured to, at each of the plurality of time steps subsequent to the initial time step, receive the single embedding vector generated as output from the prediction network at the corresponding time step and generate a probability distribution over possible speech recognition hypotheses.
    • 4. 发明授权
    • Tied and reduced RNN-T
    • US11727920B2
    • 2023-08-15
    • US17330446
    • 2021-05-26
    • Google LLC
    • Rami BotrosTara Sainath
    • G10L15/16G10L15/08
    • G10L15/16G10L15/083
    • A RNN-T model includes a prediction network configured to, at each of a plurality of times steps subsequent to an initial time step, receive a sequence of non-blank symbols. For each non-blank symbol the prediction network is also configured to generate, using a shared embedding matrix, an embedding of the corresponding non-blank symbol, assign a respective position vector to the corresponding non-blank symbol, and weight the embedding proportional to a similarity between the embedding and the respective position vector. The prediction network is also configured to generate a single embedding vector at the corresponding time step. The RNN-T model also includes a joint network configured to, at each of the plurality of time steps subsequent to the initial time step, receive the single embedding vector generated as output from the prediction network at the corresponding time step and generate a probability distribution over possible speech recognition hypotheses.