会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and system for space navigation
    • 空间导航方法和系统
    • US5957982A
    • 1999-09-28
    • US135884
    • 1998-08-18
    • George C. HughesMichael J. WehnerMark L. HansonD. Hobson LanePaul A. LavoieWarren H. TaylorBryan H. KangPaul SteinerArnold J. GallowayMichael Busby
    • George C. HughesMichael J. WehnerMark L. HansonD. Hobson LanePaul A. LavoieWarren H. TaylorBryan H. KangPaul SteinerArnold J. GallowayMichael Busby
    • G06F17/10G06F15/00
    • G06F17/10
    • A method that allows a space vehicle to determine navigation information represented by the contents of a state vector. The method includes the steps of intermittently receiving navigation signals, initializing the state vector with an estimate of the navigation information, and generating a predicted state vector that represents the predicted values for the navigation information after a predetermined time increment in the future. The method further determines whether a navigation signal has been received within a predetermined window of time from a navigation beacon. If a navigation signal has been received, the method updates the state vector and the contents of the state vector are propagated forward in time to provide an estimate of the navigation information after a predetermined time increment. In some instances, however, a navigation signal is not received within the predetermined window of time. In such situations, the method simply propagates the contents of the predicted state vector forward in time. Thus, the predicted state vector maintains an estimate of the current navigation information even in the absence of a navigation signal.
    • 一种允许航天器确定由状态向量的内容表示的导航信息的方法。 该方法包括以下步骤:间歇地接收导航信号,利用导航信息的估计来初始化状态向量,并且在将来经过预定的时间增量之后生成表示导航信息的预测值的预测状态向量。 该方法还确定在导航信标的预定窗口内是否已经接收到导航信号。 如果已经接收到导航信号,则该方法更新状态向量,并且状态向量的内容在时间上向前传播,以在预定时间增量之后提供对导航信息的估计。 然而,在一些情况下,在预定的时间窗口内没有接收到导航信号。 在这种情况下,该方法简单地将预测状态向量的内容及时传播。 因此,即使在不存在导航信号的情况下,预测状态矢量也保持当前导航信息的估计。
    • 4. 发明授权
    • Printer controlled default driver configuration
    • 打印机控制的默认驱动程序配置
    • US08208152B2
    • 2012-06-26
    • US11047834
    • 2005-01-31
    • Mark L. HansonDavid M. ChapinJonathan EdmondsPatrick Kevin Sheehan
    • Mark L. HansonDavid M. ChapinJonathan EdmondsPatrick Kevin Sheehan
    • G06F3/12G06F9/44
    • H04N1/00G06F3/1204G06F3/1225G06F3/1288H04N1/00962
    • Methods and systems for permitting a rendering device, such as a printer, to be automatically configured at the time of device driver installation, regardless of the means utilized to install the driver are disclosed. In general, a device driver (e.g., a printer driver) is associated with the rendering device. The device driver includes a driver default configuration. The driver default configuration can be initially set in the rendering device via an embedded network server (e.g., an embedded web server) in the rendering device. The driver installer can then query the driver default configuration as set on the rendering device. The driver can then be automatically adjusted prior to the installation of the driver, in response to querying the driver default configuration by the driver installer. The rendering device can be implemented as a printer, a scanner, a multi-function device, a photocopy machine, and the like.
    • 公开了用于允许诸如打印机之类的呈现设备在设备驱动程序安装时自动配置的方法和系统,而不管用于安装驱动程序的方式如何。 通常,设备驱动程序(例如,打印机驱动程序)与呈现设备相关联。 设备驱动程序包括驱动程序默认配置。 驱动程序默认配置最初可以通过渲染设备中的嵌入式网络服务器(例如,嵌入式Web服务器)在渲染设备中进行设置。 然后,驱动程序安装程序可以查看在渲染设备上设置的驱动程序默认配置。 然后可以在安装驱动程序之前自动调整驱动程序,以响应驱动程序安装程序查询驱动程序默认配置。 呈现装置可以被实现为打印机,扫描仪,多功能装置,复印机等。
    • 5. 发明授权
    • Method and system for autonomous spacecraft control
    • 自主航天器控制方法与系统
    • US5951609A
    • 1999-09-14
    • US865290
    • 1997-05-29
    • Mark L. HansonLorraine M. Fesq
    • Mark L. HansonLorraine M. Fesq
    • B64G1/52B64G1/24B64G1/36B64G1/66G06F17/00
    • G05D1/0088B64G1/24B64G1/36B64G2001/245B64G2001/247
    • An autonomous control system supports autonomous operation of the a spacecraft in carrying out mission objective commands. The control system also provides autonomous fault detection, isolation and recovery. Performance problems and anomalies are detected and accounted for in the carrying out mission objectives. A mission manager module analyzes all incoming mission objective commands to verify that sufficient system resources are available and not already dedicated to other pending mission objective commands. A command processor is included to translate acceptable mission objective commands into lower level command sequences for delivery to a flight manager controlling the underlying spacecraft systems. The mission manager reanalyzes all pending mission objective commands whenever unexpected performance or fault conditions are detected. The mission objective commands can be constructed in a hierarchical fashion, with many sequences predefined within the spacecraft. All portions of the autonomous control system, including software and associated data, can be readily replaced, supplemented or disabled at any time before, during or after launch.
    • 自主控制系统支持宇宙飞船执行任务目标命令的自主操作。 控制系统还提供自主的故障检测,隔离和恢复。 在执行任务目标时,发现和考虑了性能问题和异常情况。 任务管理器模块分析所有传入的任务目标命令,以验证足够的系统资源是否可用,而不是已经专用于其他待执行的任务目标命令。 包括一个命令处理器将可接受的任务目标命令翻译成较低级的命令序列,以便传送给控制底层飞船系统的飞行管理员。 在任何意外的性能或故障条件被检测到时,任务管理器重新分析所有待处理的任务目标命令。 任务目标命令可以以分层方式构建,其中许多序列在航天器内预定义。 自主控制系统的所有部分,包括软件和相关数据,可以在启动之前,期间或之后的任何时间轻松更换,补充或禁用。
    • 6. 发明授权
    • Exterior lighting system
    • 室外照明系统
    • US4888669A
    • 1989-12-19
    • US254211
    • 1988-10-06
    • Mark L. Hanson
    • Mark L. Hanson
    • F21V21/02
    • F21V21/02E04F2011/1048E04F2011/1872F21W2111/027F21W2111/08
    • A light fixture includes a base on which rests a translucent housing having a pair of end pieces for securing the housing to the base. A pair of mirror image brackets, received by the base, are provided to secure the light fixture to a supporting surface. The brackets are positioned on the surface in a spaced-apart relationship for mating with a backplane of the light fixture. The backplane along with the elements of the light fixture supported thereon, have two rotational orientations supported for mounting on the mirror image brackets. The two rotational orientations provide distinct positional orientations of the light fixture with respect to its supporting surface.
    • 一种灯具包括一个底座,在该基座上放置一个半透明外壳,该半透明外壳具有一对用于将外壳固定在底座上的端部件。 提供由基座接收的一对镜像支架,用于将灯具固定到支撑表面。 支架以间隔开的关系定位在表面上,用于与灯具的背板配合。 背板与支撑在其上的灯具的元件一起具有支撑用于安装在镜像支架上的两个旋转取向。 两个旋转取向提供了灯具相对于其支撑表面的不同位置取向。
    • 9. 发明授权
    • In situ method and system for autonomous fault detection, isolation and
recovery
    • 用于自主故障检测,隔离和恢复的原位方法和系统
    • US6128555A
    • 2000-10-03
    • US865302
    • 1997-05-29
    • Mark L. HansonLorraine M. FesqMai H. Nguyen
    • Mark L. HansonLorraine M. FesqMai H. Nguyen
    • G01M17/007B64G1/24B64G1/36B64G1/52B64G1/66G05B9/02G05B23/02G06F11/00G05D1/00G05D3/00G06F17/00
    • G05B23/0286B64G1/24G05B9/02B64G1/36B64G2001/245B64G2001/247
    • A fault identification, isolation and fault recovery system autonomously controls spacecraft operational systems. A fault detection and isolation module monitors the operational systems, identifies faults via such monitoring and attempts to isolate component causing the fault. Isolation may constitute a plurality of hierarchically arranged techniques that enhance speed and maximize the likelihood of identifying a correct hypothesis regarding the actual failure. The fault isolation and fault recovery modules are bounded by a severe fault override module which places the spacecraft operational systems in a safe mode or state. Thus, the override module ensures rapid entry into the safe mode while preventing an erroneous hypothesis serviced by the fault recovery module from driving the system beyond acceptable limits. A high level command processor receives command sequences from remote ground support stations and from the on-board fault recovery module. A ground based test bed attached to a ground support systems is used to generate verified high level fault recovery scripts before and during a mission to bolster fault recovery capabilities.
    • 故障识别,隔离和故障恢复系统自主控制航天器操作系统。 故障检测和隔离模块监视操作系统,通过此类监视识别故障,并尝试隔离导致故障的组件。 隔离可以构成多个分级布置的技术,其增强速度并最大化识别关于实际故障的正确假设的可能性。 故障隔离和故障恢复模块受严重的故障覆盖模块的限制,该模块将航天器操作系统置于安全模式或状态。 因此,超控模块确保快速进入安全模式,同时防止故障恢复模块服务的错误假设驱动系统超出可接受的限制。 高级命令处理器从远程地面支持站和板上故障恢复模块接收命令序列。 连接到地面支持系统的基于地面的测试台用于在任务之前和期间生成经过验证的高级故障恢复脚本,以加强故障恢复能力。