会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明申请
    • SYSTEM AND METHOD OF COLLISION AVOIDANCE USING INTELLIGENT NAVIGATION
    • 使用智能导航的碰撞避免的系统和方法
    • WO2007109785A2
    • 2007-09-27
    • PCT/US2007/064778
    • 2007-03-23
    • TOYOTA TECHNICAL CENTER, USA, INC.DOLGOV, Dmitri, A.LABERTEAUX, Kenneth, P.
    • DOLGOV, Dmitri, A.LABERTEAUX, Kenneth, P.
    • G08G1/16
    • G08G1/164
    • A system and method of intelligent navigation with collision avoidance for a vehicle is provided. The system includes a global positioning system and a vehicle navigation means in communication with the global positioning system. The system also includes a centrally located processor in communication with the navigation means, and an information database associated with the controller, for identifying a location of a first vehicle and a second vehicle. The system further includes an alert means for transmitting an alert message to the vehicle operator regarding a collision with a second vehicle. The method includes the steps of determining a geographic location of a first vehicle and a second vehicle within an environment using the global positioning system on the first vehicle and the global positioning system on the second vehicle, and modeling a collision avoidance domain of the environment of the first vehicle as a discrete state space Markov Decision Process. The methodology scales down the model of the collision avoidance domain, and determines an optimal value function and control policy that solves the scaled down collision avoidance domain. The methodology extracts a basis function from the optimal value function, scales up the extracted basis function to represent the unsealed domain, and determines an approximate solution to the control policy by solving the rescaled domain using the scaled up basis function. The methodology further uses the solution to determine if the second vehicle may collide with the first vehicle and transmits a message to the user notification device.
    • 提供了一种用于车辆的防碰撞的智能导航系统和方法。 该系统包括全球定位系统和与全球定位系统通信的车辆导航装置。 该系统还包括与导航装置通信的中心定位的处理器,以及与控制器相关联的用于识别第一车辆和第二车辆的位置的信息数据库。 该系统还包括警报装置,用于向车辆操作者发送关于与第二车辆的碰撞的警报消息。 该方法包括以下步骤:使用第一车辆上的全球定位系统和第二车辆上的全球定位系统来确定环境中的第一车辆和第二车辆的地理位置,并且对环境的碰撞避免域进行建模 第一辆车作为离散状态空间马尔可夫决策过程。 该方法缩小了避碰域的模型,并确定了解决缩小的避免冲突域的最优值函数和控制策略。 该方法从最优值函数中提取基函数,将提取的基函数放大以表示非密封域,并通过使用放大的基函数求解重定标域来确定控制策略的近似解。 该方法进一步使用该解决方案来确定第二车辆是否可能与第一车辆碰撞并且向用户通知装置发送消息。
    • 9. 发明申请
    • MODIFYING BEHAVIOR OF AUTONOMOUS VEHICLES BASED ON SENSOR BLIND SPOTS AND LIMITATIONS
    • 基于传感器盲点和限制的自动车辆修改行为
    • WO2014116512A1
    • 2014-07-31
    • PCT/US2014/012020
    • 2014-01-17
    • GOOGLE INC.
    • DOLGOV, Dmitri, A.URMSON, Christopher, Paul
    • G06T17/00H04N5/62
    • G05D1/0274B60W30/18154B60W2050/0095B60W2550/12G05D1/0248G05D1/0257G05D1/0276G05D2201/0213
    • Aspects of the present disclosure relate generally to modeling a vehicle's (101) view of its environment. This view need not include what objects or features the vehicle is actually seeing, but rather those areas that the vehicle is able to observe using its sensors (310-311, 320-323, 330-331) if the sensors were completely un-occluded. For example, for each of a plurality of sensors of the object detection component (148), a computer (110) may employ an individual 3D model of that sensor's field of view. Weather information is received and used to adjust one or more of the models (1304, 1306 in FIG. 13). After this adjusting, the models may be aggregated into a comprehensive 3D model (FIG. 10, 1308 in FIG. 13). The comprehensive model may be combined with detailed map information indicating the probability of detecting objects at different locations (1100 in FIG. 11, 1310 in FIG. 13). A model of the vehicle's environment may be computed based on the combined comprehensive 3D model and detailed map information (1312 in FIG. 13) and may be used to maneuver the vehicle (1314 in FIG. 13).
    • 本公开的方面通常涉及对车辆(101)的环境视图进行建模。 该视图不需要包括车辆实际看到的物体或特征,而是车辆能够使用其传感器(310-311,320-323,330-331)能够观察到的那些区域,如果传感器完全不被遮挡 。 例如,对于物体检测部件(148)的多个传感器中的每一个,计算机(110)可以采用该传感器的视野的单独的3D模型。 天气信息被接收并用于调整一个或多个模型(图13中的1304,1306)。 在该调整之后,可将模型聚合成一个综合的3D模型(图13中的图10,图1308)。 综合模型可以与指示在不同位置(图11中的1100,图13中的1310)中检测对象的概率的详细地图信息组合。 可以基于组合的综合3D模型和详细地图信息(图13中的1312)来计算车辆环境的模型,并且可以用于操纵车辆(图13中的1314)。
    • 10. 发明申请
    • VEHICLE CONTROL BASED ON PERCEPTION UNCERTAINTY
    • 基于情感不确定性的车辆控制
    • WO2013116141A1
    • 2013-08-08
    • PCT/US2013/023399
    • 2013-01-28
    • GOOGLE INC.
    • ZHU, JiajunDOLGOV, Dmitri, A.FERGUSON, David, I.
    • B60W30/08B60W30/00B60W10/04B60W40/02
    • G05D1/0088G05D2201/0213
    • Aspects of the disclosure relate generally to maneuvering autonomous vehicles. Specifically, the vehicle (101) may determine the uncertainty in its perception system and use this uncertainty value to make decisions about how to maneuver the vehicle. For example, the perception system may include sensors (310-311, 321-323, 330-331), object type models, and object motion models (146), each associated with uncertainties. The sensors may be associated with uncertainties based on the sensor's range, speed, and /or shape of the sensor field (421A-423A, 421B-423B). The object type models may be associated with uncertainties, for example, in whether a perceived object is of one type (such as a small car) or another type (such as a bicycle). The object motion models may also be associated with uncertainties, for example, not all objects will move exactly as they are predicted to move. These uncertainties may be used to maneuver the vehicle.
    • 本公开的方面通常涉及操纵自主车辆。 具体来说,车辆(101)可以确定其感知系统的不确定性,并使用该不确定性值来作出关于如何操纵车辆的决定。 例如,感知系统可以包括传感器(310-311,321-323,330-331),对象类型模型和对象运动模型(146),每个都与不确定性相关联。 传感器可以基于传感器的范围,速度和/或形状(421A-423A,421B-423B)与不确定性相关联。 对象类型模型可能与不确定性相关联,例如,感知对象是否是一种类型(例如小型轿厢)或另一类型(例如自行车)。 对象运动模型也可能与不确定性相关联,例如,并不是所有的对象将按照预测的移动精确地移动。 这些不确定性可用于操纵车辆。