会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Methods for fabricating FinFET structures having different channel lengths
    • 制造具有不同沟道长度的FinFET结构的方法
    • US07960287B2
    • 2011-06-14
    • US12891365
    • 2010-09-27
    • Frank Scott JohnsonRichard T. Schultz
    • Frank Scott JohnsonRichard T. Schultz
    • H01L21/311
    • H01L21/823431H01L29/66795H01L29/66818
    • Methods for fabricating FinFET structures having gate structures of different gate widths are provided. The methods include the formation of sidewall spacers of different thicknesses to define gate structures of the FinFET structures with different gate widths. The width of a sidewall spacer is defined by the height of the structure about which the sidewall spacer is formed, the thickness of the sidewall spacer material layer from which the spacer is formed, and the etch parameters used to etch the sidewall spacer material layer. By forming structures of varying height, forming the sidewall spacer material layer of varying thickness, or a combination of these, sidewall spacers of varying width can be fabricated and subsequently used as an etch mask so that gate structures of varying widths can be formed simultaneously.
    • 提供了制造具有不同栅极宽度的栅极结构的FinFET结构的方法。 这些方法包括形成不同厚度的侧壁间隔物,以限定具有不同栅极宽度的FinFET结构的栅极结构。 侧壁间隔物的宽度由形成侧壁间隔物的结构的高度,形成间隔物的侧壁间隔材料层的厚度和用于蚀刻侧壁间隔物材料层的蚀刻参数限定。 通过形成不同高度的结构,形成不同厚度的侧壁间隔物材料层或这些的组合,可以制造不同宽度的侧壁间隔物,并随后用作蚀刻掩模,从而可以同时形成不同宽度的栅极结构。
    • 2. 发明授权
    • Self-aligned trench contact and local interconnect with replacement gate process
    • 自对准沟槽接触和局部互连与替换栅极工艺
    • US08564030B2
    • 2013-10-22
    • US13157411
    • 2011-06-10
    • Richard T. Schultz
    • Richard T. Schultz
    • H01L29/94H01L31/062H01L31/113H01L31/119
    • H01L21/76897H01L21/76895H01L29/66545
    • A semiconductor device fabrication process includes forming insulating mandrels over one or more replacement metal gates on a semiconductor substrate. The mandrels include a first insulating material. Each mandrel has approximately the same width as its underlying gate with each mandrel being at least as wide as its underlying gate. Mandrel spacers are formed around each insulating mandrel. The mandrel spacers include the first insulating material. Each mandrel spacer has a profile that slopes from being wider at the bottom to narrower at the top. A second insulating layer of the second insulating material is formed over the transistor. Trenches to the sources and drains of the gates are formed by removing the second insulating material from portions of the transistor between the mandrels. Trench contacts to the sources and drains of the gates are formed by depositing conductive material in the first trenches.
    • 半导体器件制造工艺包括在半导体衬底上的一个或多个替代金属栅极上形成绝缘心轴。 心轴包括第一绝缘材料。 每个心轴具有与其底部浇口大致相同的宽度,每个心轴至少与其下面的浇口一样宽。 在每个绝缘心轴周围形成心轴间隔物。 心轴间隔件包括第一绝缘材料。 每个心轴间隔件具有从底部变宽到顶部较窄的轮廓。 第二绝缘材料的第二绝缘层形成在晶体管的上方。 通过从心轴之间的晶体管的部分去除第二绝缘材料来形成到栅极的源极和漏极的沟槽。 通过在第一沟槽中沉积导电材料来形成与栅极的源极和漏极的沟槽接触。
    • 6. 发明授权
    • Method of automatically generating schematic and waveform diagrams for analysis of timing margins and signal skews of relevant logic cells using input signal predictors and transition times
    • 自动生成原理图和波形图的方法,用于使用输入信号预测器和转换时间分析相关逻辑单元的定时裕度和信号偏移
    • US06442741B1
    • 2002-08-27
    • US09680893
    • 2000-10-06
    • Richard T. Schultz
    • Richard T. Schultz
    • G06F1750
    • G06F17/5022
    • Relevant logic cells and waveforms of a circuit are automatically identified, traced and displayed by using conventional simulation, schematic viewing and waveform viewing tools. The input and output waveforms to and from each logic cell and a transition and a transition time point of each waveform are derived. The output waveform and a selected transition time point identify a predictive input waveform and its transition time, which cause the output signal transition at the selected transition time point. The predictive input signal is the output signal of a preceding, predictive logic cell, thereby identifying the preceding predictive logic cell. Repetitions of this procedure are performed with each new identified predictive logic cell to automatically derive a series or logic cone of cells. Timing margin (set up and hold time) and signal skew (change in signal timing) are derived under best and worst case functional conditions by determining differences in the transition times of the predictive input waveforms for the cells of the logic cone.
    • 通过使用传统的仿真,原理图和波形查看工具自动识别,跟踪和显示电路的相关逻辑单元和波形。 导出到每个逻辑单元的输入和输出波形以及每个波形的转换和转换时间点。 输出波形和所选择的转换时间点识别预测输入波形及其转换时间,这导致所选转换时间点的输出信号转换。 预测输入信号是前一预测逻辑单元的输出信号,由此识别先前的预测逻辑单元。 用每个新的识别的预测逻辑单元执行该过程的重复以自动导出单元的串联或逻辑锥。 通过确定逻辑锥的单元的预测输入波形的转换时间的差异,在最佳和最差情况下的功能条件下导出定时裕度(设置和保持时间)和信号偏移(信号时序的变化)。
    • 7. 发明授权
    • Process, voltage and temperature independent clock tree deskew circuitry-active drive method
    • 过程,电压和温度独立时钟树偏移电路 - 主动驱动方式
    • US06433598B1
    • 2002-08-13
    • US09915237
    • 2001-07-25
    • Richard T. Schultz
    • Richard T. Schultz
    • G06F104
    • G06F1/10
    • A clock tree deskew circuit dynamically minimizes skew in clock signals that synchronize operation of synchronized circuit components of an integrated circuit. The clock tree deskew circuit reduces the clock tree skew in repeated intervals over a period of time. The clock tree deskew circuit is then turned off to prevent unnecessary further adjustments to the clock signals, but can be turned back on when conditions change that alter the clock tree skew. The clock signals are paired together in a continuous loop such that each clock signal is the first clock signal of the pair when paired with the next clock signal and is the second clock signal when paired with the one before it. The clock tree deskew circuit detects the absolute skew between each pair of the clock signals. The clock tree deskew circuit adjusts the first clock signal of each pair toward the second clock signal of the pair to reduce the skew between the two clock signals. After a predetermined number of adjustment cycles, the overall clock skew is minimized by repeated adjustments.
    • 时钟树去偏置电路动态地最小化同步集成电路的同步电路组件的操作的时钟信号的偏移。 时钟树偏移电路在一段时间内以重复的间隔减少时钟树的偏斜。 然后关闭时钟树偏移电路,以防止对时钟信号进行不必要的进一步调整,但是当条件改变时可以重新启动时钟树偏移。 时钟信号以连续环路配对在一起,使得当与下一个时钟信号配对时,每个时钟信号是该对的第一个时钟信号,并且当与之前的时钟信号配对时是第二个时钟信号。 时钟树偏移电路检测每对时钟信号之间的绝对偏差。 时钟树偏移电路调整每对的第一个时钟信号朝向该对的第二个时钟信号,以减少两个时钟信号之间的偏差。 在预定数量的调整周期之后,通过重复调整来最小化整个时钟偏移。
    • 8. 发明授权
    • Process, voltage and temperature independent clock tree deskew circuitry-temporary driver method
    • 过程,电压和温度独立时钟树偏移电路 - 临时驱动方法
    • US06429714B1
    • 2002-08-06
    • US10109974
    • 2002-03-29
    • Richard T. Schultz
    • Richard T. Schultz
    • H03K300
    • G06F1/10
    • A multilevel clock tree uses a temporary clock buffer or reference signal in a clock tree deskew circuit to dynamically minimize skew in a variable delay clock signal that synchronizes operation of synchronized circuit components of an integrated circuit. There are multiple temporary clock buffer signals at each level of the multilevel clock tree. Skew between the temporary clock buffer signals are minimized by providing identical path lengths and path geometries at each level of the temporary clock buffer. The clock tree deskew circuit reduces the clock tree skew, on a level by level basis, in repeated intervals over a period of time. When each level of the tree deskew circuit is deskewed, that level of the clock tree deskew circuit is then turned off to prevent unnecessary further adjustments to the clock signals, but can be turned back on when conditions change that alter the clock tree skew. The clock tree deskew circuit adjusts the variable delay clock buffer signal of each pair toward the temporary clock buffer signal of the pair to reduce the skew between the two clock buffer signals. After a predetermined number of adjustment cycles, the overall clock skew of the variable delay clock buffer signal is minimized by repeated adjustments. The variable delay clock buffer signals of each level may be optionally set as conditions warrant.
    • 多电平时钟树在时钟树偏移电路中使用临时时钟缓冲器或参考信号来动态地最小化同步集成电路的同步电路部件的操作的可变延迟时钟信号中的偏移。 在多级时钟树的每个级别都有多个临时时钟缓冲信号。 通过在临时时钟缓冲器的每个级别提供相同的路径长度和路径几何形状来最小化临时时钟缓冲器信号之间的偏移。 时钟树偏移电路在一段时间内以重复的间隔逐级降低时钟树的偏移。 当每个级别的树偏移校正电路进行偏斜校正时,该时钟树偏移电路的电平然后被关闭,以防止对时钟信号的不必要的进一步调整,但是当条件改变时可以重新开启时钟树偏斜。 时钟树偏移电路将每对的可变延迟时钟缓冲器信号调整成对的临时时钟缓冲器信号,以减少两个时钟缓冲器信号之间的偏差。 在预定数量的调整周期之后,通过重复调整使可变延迟时钟缓冲信号的总体时钟偏移最小化。 每个级别的可变延迟时钟缓冲器信号可以可选地根据条件来设置。
    • 9. 发明授权
    • Trench silicide and gate open with local interconnect with replacement gate process
    • 沟槽硅化物和栅极开放,具有替代栅极工艺的局部互连
    • US08716124B2
    • 2014-05-06
    • US13295574
    • 2011-11-14
    • Richard T. Schultz
    • Richard T. Schultz
    • H01L21/4763
    • H01L27/088H01L21/76801H01L21/76895H01L21/76897
    • A semiconductor device fabrication process includes forming insulating mandrels over replacement metal gates on a semiconductor substrate with first gates having sources and drains and at least one second gate being isolated from the first gates. Mandrel spacers are formed around each insulating mandrel. The mandrels and mandrel spacers include the first insulating material. A second insulating layer of the second insulating material is formed over the transistor. One or more first trenches are formed to the sources and drains of the first gates by removing the second insulating material between the insulating mandrels. A second trench is formed to the second gate by removing portions of the first and second insulating materials above the second gate. The first trenches and the second trench are filled with conductive material to form first contacts to the sources and drains of the first gates and a second contact to the second gate.
    • 半导体器件制造工艺包括在半导体衬底上的替代金属栅极上形成绝缘心轴,其中第一栅极具有源极和漏极,并且至少一个第二栅极与第一栅极隔离。 在每个绝缘心轴周围形成心轴间隔物。 心轴和心轴间隔件包括第一绝缘材料。 第二绝缘材料的第二绝缘层形成在晶体管的上方。 通过去除绝缘心轴之间的第二绝缘材料,将一个或多个第一沟槽形成到第一栅极的源极和漏极。 通过去除第二栅极上方的第一绝缘材料和第二绝缘材料的部分,形成第二沟槽到第二栅极。 第一沟槽和第二沟槽填充有导电材料,以形成第一栅极的源极和漏极的第一接触以及到第二栅极的第二接触。