会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Method for remotely controlling and/or regulating a system
    • 用于远程控制和/或调节系统的方法
    • US20050221811A1
    • 2005-10-06
    • US10510372
    • 2003-04-04
    • Florian StraubThomas Von HoffMario CrevatinHans-Peter ZugerBernhard Deck
    • Florian StraubThomas Von HoffMario CrevatinHans-Peter ZugerBernhard Deck
    • H04M1/00H04M11/00H04M3/00
    • H04M11/007
    • The invention relates to a method for remotely controlling and/or regulating at least one system (1), in particular an industrial system using a communications device (2) which is assigned to the system (1), and at least one receiver device (3), information relating to the system being transmitted from the communications device (2) to the at least one receiver device (3), the information containing a validation code which is generated by the communications device (2), a message being received by the communications device (2), the communications device (2) extracting a check code and instruction information from the message according to a first extraction rule, the communications device (2) validating the message by means of the validation code and check code, and the instruction information being implemented by the system (1) only when the validation is successful.
    • 本发明涉及用于远程控制和/或调节至少一个系统(1)的方法,特别是使用分配给系统(1)的通信设备(2)的工业系统和至少一个接收机设备( 3)与从通信设备(2)发送到至少一个接收机设备(3)的系统有关的信息,该信息包含由通信设备(2)产生的验证码,由 通信设备(2),通信设备(2)根据第一提取规则从消息中提取校验码和指令信息,通信设备(2)通过验证码和校验码对消息进行验证,以及 所述指令信息仅在验证成功时由系统(1)实现。
    • 2. 发明授权
    • Monitoring a degrading system
    • 监控降级系统
    • US08000930B2
    • 2011-08-16
    • US12076852
    • 2008-03-24
    • Andreas PoncetKonrad StadlerThomas Von Hoff
    • Andreas PoncetKonrad StadlerThomas Von Hoff
    • G06F17/18G06F19/00G06F11/30G06F17/40G21C17/00
    • G05B23/0229G05B23/0278G05B23/0283
    • The present disclosure is concerned with the identification of fault origins of slowly degrading systems such as industrial gas turbines. Following the initial input of some parameter values, exemplary procedure comprises a number of steps which are repeated periodically during the operation of the gas turbine. First, for each potential fault such as e.g. a contamination of compressor blades, erosion of turbine blades or corrosion of machine parts, a pre-symptom fault probability, characteristic of the specific gas turbine considered, and a symptom-conditional fault probability are calculated. In a second step, on-line data from the monitoring devices are loaded in order to update information about symptoms such as e.g. reductions in polytropic efficiency and in flow capacity, changes in vibration spectrum, or other machine condition indicators, and a post-symptom fault probability is calculated. In a third step, the calculated fault probabilities are displayed and transmitted to a planning system for scheduling of gas turbine operation or maintenance actions.
    • 本公开涉及对诸如工业燃气轮机之类的缓慢降解系统的故障起源的识别。 在一些参数值的初始输入之后,示例性过程包括在燃气轮机的操作期间周期性重复的多个步骤。 首先,对于每个潜在故障,例如 计算压缩机叶片的污染,涡轮机叶片的腐蚀或机器部件的腐蚀,预应力故障概率,所考虑的特定燃气轮机的特性以及症状条件故障概率。 在第二步中,加载来自监视设备的在线数据,以便更新关于症状的信息,例如, 计算多变性效率和流量减少,振动频谱变化或其他机器状况指标,以及症状后故障概率。 在第三步中,计算出的故障概率被显示并传送到用于调度燃气轮机操作或维护动作的规划系统。
    • 5. 发明申请
    • METHOD AND SYSTEM FOR MONITORING PROCESS STATES OF AN INTERNAL COMBUSTION ENGINE
    • 用于监测内燃机过程状态的方法和系统
    • US20090281737A1
    • 2009-11-12
    • US12480411
    • 2009-06-08
    • Konrad STADLERAndreas PoncetThomas Von Hoff
    • Konrad STADLERAndreas PoncetThomas Von Hoff
    • G01B3/44
    • F02C9/00F01D17/08F02C7/057F02D41/0007F02D41/1445F02D41/1446F02D41/1447F02D41/1497F02D41/18F02D2200/1004F05D2260/80F05D2270/303Y02T10/144
    • For monitoring (unmeasured) process states of a rotating machine having a combustion chamber (e.g. a gas turbine), compositions of educts entering the combustion chamber are measured. Based on the compositions of the educts, the composition of the product produced by the combustion chamber can be determined. Moreover, the mechanical power (Pmech) generated by the rotating machine can be determined. Based on the mechanical power (Pmech), the composition of the educts and product, and stoichiometric relationships of educts and product, the values of process states, such as the air mass flow (wa) through the compressor leading into the combustion chamber and/or the gas mass flow (wg), the composition and/or the temperature (T3) of exhaust gas exiting the combustion chamber can be determined. Based on precise measurements of the educt (e.g. the composition of air and fuel in the combustion process), the product (i.e. the composition of the exhaust gas and its temperature) is derived and, without the need of an iterative or recursive method, the turbine inlet temperature (T3) can be monitored and controlled.
    • 对于具有燃烧室(例如,燃气轮机)的旋转机器的监测(未测量)过程状态,测量进入燃烧室的离析物的组成。 基于离析物的组成,可以确定由燃烧室产生的产物的组成。 此外,可以确定由旋转机器产生的机械功率(Pmech)。 基于机械功率(Pmech),离析物和产物的组成以及离子和产物的化学计量关系,通过经过通向燃烧室的压缩机的空气质量流量(wa)和/ 或气体质量流量(wg),可以确定离开燃烧室的废气的组成和/或温度(T3)。 基于对流出物的精确测量(例如燃烧过程中的空气和燃料的组成),导出产物(即废气的组成及其温度),并且不需要迭代或递归方法 涡轮进口温度(T3)可以被监测和控制。
    • 6. 发明授权
    • Method and system for monitoring process states of an internal combustion engine
    • 用于监测内燃机过程状态的方法和系统
    • US08280647B2
    • 2012-10-02
    • US12480411
    • 2009-06-08
    • Konrad StadlerAndreas PoncetThomas Von Hoff
    • Konrad StadlerAndreas PoncetThomas Von Hoff
    • G01B3/00
    • F02C9/00F01D17/08F02C7/057F02D41/0007F02D41/1445F02D41/1446F02D41/1447F02D41/1497F02D41/18F02D2200/1004F05D2260/80F05D2270/303Y02T10/144
    • For monitoring (unmeasured) process states of a rotating machine having a combustion chamber (e.g. a gas turbine), compositions of educts entering the combustion chamber are measured. Based on the compositions of the educts, the composition of the product produced by the combustion chamber can be determined. Moreover, the mechanical power (Pmech) generated by the rotating machine can be determined. Based on the mechanical power (Pmech), the composition of the educts and product, and stoichiometric relationships of educts and product, the values of process states, such as the air mass flow (wa) through the compressor leading into the combustion chamber and/or the gas mass flow (wg), the composition and/or the temperature (T3) of exhaust gas exiting the combustion chamber can be determined. Based on precise measurements of the educt (e.g. the composition of air and fuel in the combustion process), the product (i.e. the composition of the exhaust gas and its temperature) is derived and, without the need of an iterative or recursive method, the turbine inlet temperature (T3) can be monitored and controlled.
    • 对于具有燃烧室(例如,燃气轮机)的旋转机器的监测(未测量)过程状态,测量进入燃烧室的离析物的组成。 基于离析物的组成,可以确定由燃烧室产生的产物的组成。 此外,可以确定由旋转机器产生的机械功率(Pmech)。 基于机械功率(Pmech),离析物和产物的组成以及离子和产物的化学计量关系,通过经过通向燃烧室的压缩机的空气质量流量(wa)和/ 或气体质量流量(wg),可以确定离开燃烧室的废气的组成和/或温度(T3)。 基于对流出物的精确测量(例如燃烧过程中的空气和燃料的组成),导出产物(即废气的组成及其温度),并且不需要迭代或递归方法 涡轮进口温度(T3)可以被监测和控制。
    • 7. 发明申请
    • ENERGY STORAGE SYSTEMS
    • 能源储存系统
    • US20120248873A1
    • 2012-10-04
    • US13413174
    • 2012-03-06
    • Alexandre OUDALOVMehmet MercangoezThomas Von Hoff
    • Alexandre OUDALOVMehmet MercangoezThomas Von Hoff
    • H02J9/00H02J4/00
    • H02J3/32Y10T307/549
    • A method for controlling an energy storage system for connection to a power system, and such an energy storage system are provided. The method makes use of a model based predictive controller to optimize the charging/discharging rates of energy storage elements in a hybrid energy storage system. The method includes determining respective desired charging/discharging rates for the energy storage elements in dependence upon state of charge predictions from respective models of the storage elements, using model predictive control, and adjusting respective charging/discharging rates of the storage elements in accordance with the determined rates. The energy system includes a controller configured to control respective charging/discharging rates of the energy storage elements in accordance with the method.
    • 提供了一种用于控制用于连接到电力系统的能量存储系统的方法,以及这种能量存储系统。 该方法利用基于模型的预测控制器来优化混合能量存储系统中的能量存储元件的充电/放电速率。 该方法包括根据来自存储元件的各个模型的电荷预测状态,使用模型预测控制来确定能量存储元件的各个期望的充电/放电速率,并根据所述存储元件调整相应的充电/放电速率 确定的利率。 能量系统包括控制器,其配置为根据该方法控制能量存储元件的相应充电/放电速率。
    • 8. 发明申请
    • Monitoring a degrading system
    • 监控降级系统
    • US20080201104A1
    • 2008-08-21
    • US12076852
    • 2008-03-24
    • Andreas PoncetKonrad StadlerThomas Von Hoff
    • Andreas PoncetKonrad StadlerThomas Von Hoff
    • G06F17/18G06F15/00
    • G05B23/0229G05B23/0278G05B23/0283
    • The present disclosure is concerned with the identification of fault origins of slowly degrading systems such as industrial gas turbines. Following the initial input of some parameter values, exemplary procedure comprises a number of steps which are repeated periodically during the operation of the gas turbine. First, for each potential fault such as e.g. a contamination of compressor blades, erosion of turbine blades or corrosion of machine parts, a pre-symptom fault probability, characteristic of the specific gas turbine considered, and a symptom-conditional fault probability are calculated. In a second step, on-line data from the monitoring devices are loaded in order to update information about symptoms such as e.g. reductions in polytropic efficiency and in flow capacity, changes in vibration spectrum, or other machine condition indicators, and a post-symptom fault probability is calculated. In a third step, the calculated fault probabilities are displayed and transmitted to a planning system for scheduling of gas turbine operation or maintenance actions.
    • 本公开涉及对诸如工业燃气轮机之类的缓慢降解系统的故障起源的识别。 在一些参数值的初始输入之后,示例性过程包括在燃气轮机的操作期间周期性重复的多个步骤。 首先,对于每个潜在故障,例如 计算压缩机叶片的污染,涡轮机叶片的腐蚀或机器部件的腐蚀,预应力故障概率,所考虑的特定燃气轮机的特性以及症状条件故障概率。 在第二步中,加载来自监视设备的在线数据,以便更新关于症状的信息,例如, 计算多变性效率和流量减少,振动频谱变化或其他机器状况指标,以及症状后故障概率。 在第三步中,计算出的故障概率被显示并传送到用于调度燃气轮机操作或维护动作的规划系统。