会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Method of and apparatus for analyzing noise in a signal processing system
    • 用于分析信号处理系统中的噪声的方法和装置
    • US20080240203A1
    • 2008-10-02
    • US11731261
    • 2007-03-29
    • Farhan A. BaqaiAkira MatsuiKenichi Nishio
    • Farhan A. BaqaiAkira MatsuiKenichi Nishio
    • H04B1/00
    • G01V1/28G06K9/40G06T5/002G06T2207/10024G06T2207/20016G06T2207/30168G10L25/18H04N5/217H04N9/646
    • A fast accurate multi-channel frequency dependent scheme for analyzing noise in a signal processing system is described herein. Noise is decomposed within each channel into frequency bands and sub-band noise is propagated. To avoid the computational complexity of a convolution, traditional methods either assume the noise to be white, at any point in the signal processing pipeline, or they just ignore spatial operations. By assuming the noise to be white within each frequency band, it is possible to propagate any type of noise (white, colored, Gaussian, non-Gaussian and others) across a spatial transformation in a very fast and accurate manner. To demonstrate the efficacy of this technique, noise propagation is considered across various spatial operations in an image processing pipeline. Furthermore, the computational complexity is a very small fraction of the computational cost of propagating an image through a signal processing system.
    • 本文描述了用于分析信号处理系统中的噪声的快速准确的多通道频率相关方案。 噪声在每个通道内分解成频带,并且传播子带噪声。 为了避免卷积的计算复杂度,传统方法或者假设噪声为白色,在信号处理流水线中的任何点,或者它们只是忽略空间操作。 通过在每个频带内假设噪声为白色,可以以非常快速和准确的方式跨越空间变换传播任何类型的噪声(白色,彩色,高斯,非高斯等)。 为了演示该技术的功效,在图像处理流水线中,考虑了各种空间操作中的噪声传播。 此外,计算复杂度是通过信号处理系统传播图像的计算成本的很小一部分。
    • 4. 发明授权
    • Method of and apparatus for image denoising
    • 图像去噪的方法和装置
    • US08711249B2
    • 2014-04-29
    • US11731542
    • 2007-03-29
    • Farhan A. BaqaiAkira MatsuiKenichi Nishio
    • Farhan A. BaqaiAkira MatsuiKenichi Nishio
    • H04N5/21
    • H04N1/00G06T5/002H04N5/232H04N9/045H04N9/646H04N9/735
    • An image denoising system and method of implementing the image denoising system is described herein. Noise is decomposed within each channel into frequency bands, and sub-band noise is propagated. Denoising is then able to occur at any node in a camera pipeline after accurately predicting noise that is signal level-dependent, frequency dependent and has inter-channel correlation. A methodology is included for estimating image noise in each color channel at a sensor output based on average image level and camera noise parameters. A scheme is implemented for detecting a peak-white image level for each color channel and predicting image level values for representative colors. Based on a noise model and camera parameters, noise levels are predicted for each color channel for each color patch and these noise levels are propagated to the denoising node. A three dimentional LUT correlates signal level to noise level. Then, a denoising threshold is adaptively controlled.
    • 本文描述了一种图像去噪系统和实现图像去噪系统的方法。 噪声在每个通道内分解成频带,并且传播子带噪声。 然后,在准确预测信号电平依赖,频率依赖并具有信道间相关性的噪声之后,可以在相机流水线中的任何节点处进行去噪。 包括一种基于平均图像水平和相机噪声参数估计传感器输出中每个颜色通道中的图像噪声的方法。 实现用于检测每个颜色通道的峰 - 白图像水平并且预测代表性颜色的图像水平值的方案。 基于噪声模型和摄像机参数,为每个色标的每个颜色通道预测噪声水平,并且将这些噪声水平传播到去噪节点。 三维LUT将信号电平与噪声电平相关联。 然后,自适应地控制去噪阈值。
    • 5. 发明授权
    • Method of and apparatus for analyzing noise in a signal processing system
    • 用于分析信号处理系统中的噪声的方法和装置
    • US08108211B2
    • 2012-01-31
    • US11731261
    • 2007-03-29
    • Farhan A. BaqaiAkira MatsuiKenichi Nishio
    • Farhan A. BaqaiAkira MatsuiKenichi Nishio
    • G10L21/02
    • G01V1/28G06K9/40G06T5/002G06T2207/10024G06T2207/20016G06T2207/30168G10L25/18H04N5/217H04N9/646
    • A fast accurate multi-channel frequency dependent scheme for analyzing noise in a signal processing system is described herein. Noise is decomposed within each channel into frequency bands and sub-band noise is propagated. To avoid the computational complexity of a convolution, traditional methods either assume the noise to be white, at any point in the signal processing pipeline, or they just ignore spatial operations. By assuming the noise to be white within each frequency band, it is possible to propagate any type of noise (white, colored, Gaussian, non-Gaussian and others) across a spatial transformation in a very fast and accurate manner. To demonstrate the efficacy of this technique, noise propagation is considered across various spatial operations in an image processing pipeline. Furthermore, the computational complexity is a very small fraction of the computational cost of propagating an image through a signal processing system.
    • 本文描述了用于分析信号处理系统中的噪声的快速准确的多通道频率相关方案。 噪声在每个通道内分解成频带,并且传播子带噪声。 为了避免卷积的计算复杂度,传统方法或者假设噪声为白色,在信号处理流水线中的任何点,或者它们只是忽略空间操作。 通过在每个频带内假设噪声为白色,可以以非常快速和准确的方式跨越空间变换传播任何类型的噪声(白色,彩色,高斯,非高斯等)。 为了演示该技术的功效,在图像处理流水线中,考虑了各种空间操作中的噪声传播。 此外,计算复杂度是通过信号处理系统传播图像的计算成本的很小一部分。
    • 6. 发明申请
    • Method of and apparatus for image denoising
    • 图像去噪的方法和装置
    • US20080239094A1
    • 2008-10-02
    • US11731542
    • 2007-03-29
    • Farhan A. BaqaiAkira MatsuiKenichi Nishio
    • Farhan A. BaqaiAkira MatsuiKenichi Nishio
    • H04N5/225H04N9/73
    • H04N1/00G06T5/002H04N5/232H04N9/045H04N9/646H04N9/735
    • An image denoising system and method of implementing the image denoising system is described herein. Noise is decomposed within each channel into frequency bands, and sub-band noise is propagated. Denoising is then able to occur at any node in a camera pipeline after accurately predicting noise that is signal level-dependent, frequency dependent and has inter-channel correlation. A methodology is included for estimating image noise in each color channel at a sensor output based on average image level and camera noise parameters. A scheme is implemented for detecting a peak-white image level for each color channel and predicting image level values for representative colors. Based on a noise model and camera parameters, noise levels are predicted for each color channel for each color patch and these noise levels are propagated to the denoising node. A three dimentional LUT correlates signal level to noise level. Then, a denoising threshold is adaptively controlled.
    • 本文描述了一种图像去噪系统和实现图像去噪系统的方法。 噪声在每个通道内分解成频带,传播子带噪声。 然后,在准确预测信号电平依赖,频率依赖并具有信道间相关性的噪声之后,可以在相机流水线中的任何节点处进行去噪。 包括一种基于平均图像水平和相机噪声参数估计传感器输出中每个颜色通道中的图像噪声的方法。 实现用于检测每个颜色通道的峰 - 白图像水平并且预测代表性颜色的图像水平值的方案。 基于噪声模型和摄像机参数,为每个色标的每个颜色通道预测噪声水平,并且将这些噪声水平传播到去噪节点。 三维LUT将信号电平与噪声电平相关联。 然后,自适应地控制去噪阈值。
    • 7. 发明授权
    • Method for device spectral sensitivity reconstruction
    • 器件光谱灵敏度重建方法
    • US07557826B2
    • 2009-07-07
    • US11398196
    • 2006-04-04
    • Alexander BerestovTed J CooperKenichi NishioFarhan A. Baqai
    • Alexander BerestovTed J CooperKenichi NishioFarhan A. Baqai
    • H04N17/00H04N17/02H04N5/235H04N3/14H04N5/335H04N1/46H01J40/14H01L27/00
    • H04N17/002H04N9/045
    • A method and system are provided for approximating spectral sensitivities of a particular image sensor, the image sensor having a color filter array positioned over the image sensor. In one example of the method, the method involves measuring spectral sensitivities of a set of image sensors each having a color filter array positioned over the image sensor, calculating mean spectral sensitivities of the set of image sensors for each color within the color filter array, measuring outputs of a particular image sensor when capturing a picture of a plurality of color patches under a first illuminant and calculating spectral sensitivities of the particular image sensor using the mean spectral sensitivities and the output of the particular image sensor. In some embodiments, the method further comprises utilizing the calculated spectral sensitivities to determine outputs of the particular image sensor under a second illuminant. In some embodiments, the method further comprises utilizing the calculated spectral sensitivities to calibrate a camera including the image sensor.
    • 提供了用于近似特定图像传感器的光谱灵敏度的方法和系统,该图像传感器具有位于图像传感器上方的滤色器阵列。 在该方法的一个示例中,该方法涉及测量一组图像传感器的光谱灵敏度,每个图像传感器具有位于图像传感器上方的滤色器阵列,计算滤色器阵列内每种颜色的图像传感器组的平均光谱灵敏度, 测量特定图像传感器的输出,当在第一光源下拍摄多个色块的图像时,使用平均光谱灵敏度和特定图像传感器的输出来计算特定图像传感器的光谱灵敏度。 在一些实施例中,该方法还包括利用所计算的光谱灵敏度来确定第二光源下的特定图像传感器的输出。 在一些实施例中,该方法还包括利用所计算的光谱灵敏度来校准包括图像传感器的照相机。
    • 8. 发明申请
    • System and method for denoising using signal dependent adaptive weights
    • 使用信号相关自适应权重去噪的系统和方法
    • US20100067821A1
    • 2010-03-18
    • US12284055
    • 2008-09-18
    • Farhan A. Baqai
    • Farhan A. Baqai
    • G06K9/40
    • G06K9/40G06T5/002G06T5/20
    • A system and method for denoising using signal dependent adaptive weights includes an imaging device that captures image data corresponding to a photographic target. A denoising manager identifies similar pixels from said image data that are located within a pre-defined processing window around the pixel to be denoised. The denoising manager computes signal-dependent weighting values that correspond to respective ones of the similar pixels. The denoising manager then calculates the denoised pixel value by utilizing the weighting values in conjunction with raw pixel values of the similar pixel set. In this manner all pixels in the image are denoised.
    • 使用依赖于信号的自适应权重去噪的系统和方法包括捕获与摄影目标对应的图像数据的成像装置。 去噪管理器从所述图像数据中识别位于预定义处理窗口内的类似像素,围绕要去噪的像素。 去噪管理器计算与相应像素相应的信号相关加权值。 去噪管理器然后通过利用加权值结合相似像素组的原始像素值来计算去噪像素值。 以这种方式,图像中的所有像素都被去噪声。
    • 9. 发明授权
    • Error analysis for image interpolation and demosaicing using lattice theory
    • 使用晶格理论对图像插值和去马赛克进行误差分析
    • US07558423B2
    • 2009-07-07
    • US11394836
    • 2006-03-31
    • Farhan A. BaqaiAlexander Berestov
    • Farhan A. BaqaiAlexander Berestov
    • G06K9/00G06K9/32G09G5/00H04N1/46
    • H04N9/045G06T3/4015
    • A spatial transformation methodology provides a new image interpolation scheme, or analyzes an already existing one. Examples of spatial operations include but are not limited to, demosaicing, edge enhancement or sharpening, linear filtering, and non-linear filtering. A demosaicing operation is described herein, although the scheme is applied generally to spatial transformation operations. The spatial transformation methodology includes detailed expressions for the noise covariance after a spatial operation is performed for each of the three color channels, red, green, and blue. A color filter array is in the form of a Bayer pattern and demosaicing is performed using a 4-neighbor bilinear interpolation. Using lattice theory, the spatial transformation methodology predicts noise covariance after demosaicing in terms of the input noise covariance and an autocorrelation function of the image is determined for a given selectable number of shifts.
    • 空间变换方法提供了一种新的图像插值方案,或分析了已有的图像插值方案。 空间操作的示例包括但不限于去马赛克,边缘增强或锐化,线性滤波和非线性滤波。 这里描述了去马赛克操作,尽管该方案通常应用于空间变换操作。 空间变换方法包括对三个颜色通道(红色,绿色和蓝色)中的每一个执行空间操作之后的噪声协方差的详细表达式。 滤色器阵列是拜耳图案的形式,并且使用四相双线性插值来执行去马赛克。 使用晶格理论,空间变换方法根据输入噪声协方差来估计去马赛克之后的噪声协方差,并且对于给定的可选择的移位数确定图像的自相关函数。
    • 10. 发明授权
    • Systems and methods for threshold-based luma channel noise reduction
    • 基于阈值的亮度信道噪声降低的系统和方法
    • US08836824B2
    • 2014-09-16
    • US13151967
    • 2011-06-02
    • Farhan A. BaqaiRalph Brunner
    • Farhan A. BaqaiRalph Brunner
    • H04N5/217H04N5/21G06K9/40
    • H04N5/21G06K9/40H04N5/217
    • Systems, methods, and computer readable media for removing noise from the luminance (luma) channel in a digital image represented in the YUV color space are described. In general, an element from the luma channel may be selected and a region about that element defined. Using a threshold that is based on the selected luma element's value, similar luma values within the defined region may be identified and combined to provide a substitute value. The substitute value may be blended with the value of the selected element within the image's luma channel. In another implementation, element values from both an image's luma and chroma channels may be used to identify similar luma values.
    • 描述了用于从YUV颜色空间中表示的数字图像中的亮度(亮度)通道去除噪声的系统,方法和计算机可读介质。 通常,可以选择来自亮度通道的元件,并且定义关于该元件的区域。 使用基于所选择的亮度元素值的阈值,可以识别并组合所定义区域内的相似亮度值以提供替代值。 替代值可以与图像的亮度通道内的所选择的元素的值相混合。 在另一实现中,可以使用来自图像的亮度和色度通道的元素值来识别相似的亮度值。