会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Identifying Matching Canonical Documents in Response to a Visual Query and in Accordance with Geographic Information
    • 识别符合视觉查询并符合地理信息的匹配规范文件
    • US20120134590A1
    • 2012-05-31
    • US13309484
    • 2011-12-01
    • David PetrouAshok C. PopatMatthew R. Casey
    • David PetrouAshok C. PopatMatthew R. Casey
    • G06K9/18
    • G06F17/3087G06F17/30253G06K9/00483G06K9/72G06K2209/01
    • A server system receives a visual query from a client system distinct from the server system. The server system performs optical character recognition (OCR) on the visual query to produce text recognition data representing textual characters, including a plurality of textual characters in a contiguous region of the visual query. The server system scores each textual character in the plurality of textual characters in accordance with the geographic location of the client system. The server system identifies, in accordance with the scoring, one or more high quality textual strings, each comprising a plurality of high quality textual characters from among the plurality of textual characters in the contiguous region of the visual query. Then the server system retrieves a canonical document having the one or more high quality textual strings and sends at least a portion of the canonical document to the client system.
    • 服务器系统从与服务器系统不同的客户端系统接收可视化查询。 服务器系统在视觉查询上执行光学字符识别(OCR)以产生表示文本字符的文本识别数据,包括视觉查询的连续区域中的多个文本字符。 服务器系统根据客户端系统的地理位置对多个文本字符中的每个文本字符进行分数。 服务器系统根据评分识别一个或多个高质量的文本字符串,每个文本字符串包括来自视觉查询的连续区域中的多个文本字符中的多个高质量文本字符。 然后,服务器系统检索具有一个或多个高质量文本字符串的规范文档,并将规范文档的至少一部分发送给客户端系统。
    • 8. 发明授权
    • Identifying matching canonical documents consistent with visual query structural information
    • 识别与视觉查询结构信息一致的匹配规范文档
    • US08811742B2
    • 2014-08-19
    • US13309471
    • 2011-12-01
    • David PetrouAshok C. PopatMatthew R. Casey
    • David PetrouAshok C. PopatMatthew R. Casey
    • G06K9/62
    • G06K9/00456G06F17/30011G06F17/30253G06F17/30864G06K9/036G06K9/72G06K2209/01
    • A server system receives a visual query from a client system, performs optical character recognition (OCR) on the visual query to produce text recognition data representing textual characters, including a plurality of textual characters in a contiguous region of the visual query. The server system also produces structural information associated with the textual characters in the visual query. Textual characters in the plurality of textual characters are scored. The method further includes identifying, in accordance with the scoring, one or more high quality textual strings, each comprising a plurality of high quality textual characters from among the plurality of textual characters in the contiguous region of the visual query. A canonical document that includes the one or more high quality textual strings and that is consistent with the structural information is retrieved. At least a portion of the canonical document is sent to the client system.
    • 服务器系统从客户端系统接收视觉查询,在视觉查询上执行光学字符识别(OCR),以产生表示文本字符的文本识别数据,包括视觉查询的连续区域中的多个文本字符。 服务器系统还产生与视觉查询中的文本字符相关联的结构信息。 对多个文字进行文字处理。 该方法还包括根据评分识别一个或多个高质量的文本字符串,每个文本字符串包括来自视觉查询的连续区域中的多个文本字符中的多个高质量文本字符。 检索包含一个或多个高质量文本字符串并与结构信息一致的规范文档。 规范文件的至少一部分被发送到客户端系统。
    • 10. 发明授权
    • Document image decoding using an integrated stochastic language model
    • 使用综合随机语言模型进行文档图像解码
    • US06678415B1
    • 2004-01-13
    • US09570730
    • 2000-05-12
    • Ashok C. PopatDan S. BloombergDaniel H. Greene
    • Ashok C. PopatDan S. BloombergDaniel H. Greene
    • G06K962
    • G06K9/72G06K2209/01
    • A text recognition system represents the decoded message of a document image as a path through an image network. A method for integrating a language model into the network selectively expands the network to accommodate the language model only for certain ones of the paths in the network, effectively managing the memory storage requirements and computational complexities of integrating the language model efficiently into the network. The language model generates probability distributions indicating the probability of a certain character occurring in a string, given one or more previous characters in the string. Selectively expanding the image network is achieved by initially using upper bounds on the language model probabilities on the branches of an unexpanded image network. A best path search operation is then performed to determine an estimated best path through the image network using these upper bound scores. After decoding, only the nodes on the estimated best path are expanded with new nodes and with branches incoming to the new nodes that accommodate new language model scores reflecting actual character histories in place of the upper bound scores. Decoding and selectively expanding the image network are repeated until the final output transcription of the text image has been produced.
    • 文本识别系统将文档图像的解码消息表示为通过图像网络的路径。 将语言模型集成到网络中的方法选择性地扩展网络以适应网络中某些路径的语言模型,有效地管理存储器存储需求和将语言模型有效地集成到网络中的计算复杂性。 语言模型生成指定字符串中某个字符发生概率的概率分布,给定一个或多个字符串中的以前的字符。 通过开始使用未展开图像网络的分支上的语言模型概率的上限来实现选择性地扩展图像网络。 然后执行最佳路径搜索操作以通过使用这些上界得分来确定通过图像网络的估计最佳路径。 在解码之后,只有估计最佳路径上的节点才会用新节点扩展,并且分支进入新节点,以适应反映实际角色历史的新语言模型分数来代替上限分数。 重复解码并选择性地扩展图像网络,直到产生文本图像的最终输出转录。