会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明申请
    • VARIABLE DISCRETIZATION METHOD FOR FLOW SIMULATION ON COMPLEX GEOLOGICAL MODELS
    • 用于复杂地质模型流变模拟的可变分离方法
    • WO2012071090A1
    • 2012-05-31
    • PCT/US2011/047612
    • 2011-08-12
    • EXXONMOBIL UPSTREAM RESEARCH COMPANYYANG, YahanBI, LinfengGUO, WeidongPARASHKEVOV, RossenWU, Xiao-Hui
    • YANG, YahanBI, LinfengGUO, WeidongPARASHKEVOV, RossenWU, Xiao-Hui
    • G06G7/58
    • G06F17/5018G01V99/005G06F2217/16
    • A variable discretization method for general multiphase flow simulation in a producing hydrocarbon reservoir. For subsurface regions for which a regular or Voronoi computational mesh is suitable, a finite difference/finite volume method ("FDM") is used to discretize numerical solution of the differential equations governing fluid flow (101). For subsurface regions with more complex geometries, a finite element method ("FEM") is used. The invention combines FDM and FEM in a single computational framework (102). Mathematical coupling at interfaces between different discretization regions is accomplished by decomposing individual phase velocity into an averaged component and a correction term. The averaged velocity component may be determined from pressure and averaged capillary pressure and other properties based on the discretization method employed, while the velocity correction term may be computed using a multipoint flux approximation type method, which may be reduced to two-point flux approximation for simple grid and permeability fields.
    • 一种用于生产油气藏的一般多相流模拟的可变离散化方法。 对于常规或Voronoi计算网格适合的地下区域,使用有限差分/有限体积法(“FDM”)来离散控制流体流动的微分方程(101)的数值解。 对于具有更复杂几何的地下区域,使用有限元法(“FEM”)。 本发明将FDM和FEM组合在一个单一的计算框架中(102)。 通过将各个相速度分解成平均分量和校正项来实现不同离散区域之间的界面处的数学耦合。 平均速度分量可以基于所采用的离散化方法从压力和平均毛细管压力和其他性质确定,而速度校正项可以使用多点通量近似方法来计算,该方法可以减少到两点通量近似 简单网格和渗透性领域。
    • 9. 发明公开
    • METHODS AND SYSTEMS FOR MACHINE-LEARNING BASED SIMULATION OF FLOW
    • 基于机器学习的流动模拟方法和系统
    • EP2599031A1
    • 2013-06-05
    • EP11812892.5
    • 2011-05-19
    • ExxonMobil Upstream Research CompanyYang, Yahan
    • YANG, YahanUSADI, AdamLI, DachangPARASHKEVOV, RossenTEREKHOV, Sergey, A.WU, Xiao-hui
    • G06G7/48
    • G06F17/5009G06F17/5018G06N3/0427
    • There is provided a method for modeling a hydrocarbon reservoir that includes generating a reservoir model comprising a plurality of sub regions. At least one of the sub regions is simulated using a training simulation to obtain a set of training parameters comprising state variables and boundary conditions of the at least one sub region. A machine learning algorithm is used to approximate, based on the set of training parameters, an inverse operator of a matrix equation that provides a solution to fluid flow through a porous media. The hydrocarbon reservoir can be simulated using the inverse operator approximated for the at least one sub region. The method also includes generating a data representation of a physical hydrocarbon reservoir can be generated in a non-transitory, computer-readable, medium based, at least in part, on the results of the simulation.
    • 提供了一种用于建模碳氢化合物储层的方法,其包括生成包括多个子区域的储层模型。 使用训练模拟模拟至少一个子区域以获得包括至少一个子区域的状态变量和边界条件的一组训练参数。 机器学习算法用于基于该组训练参数来近似矩阵方程的逆运算符,该矩阵方程为通过多孔介质的流体流提供解决方案。 可以使用近似于至少一个子区域的逆算子来模拟碳氢化合物储层。 该方法还包括可以至少部分地基于模拟结果在非暂时性计算机可读介质中生成物理碳氢化合物储层的数据表示。
    • 10. 发明公开
    • METHODS AND SYSTEMS FOR MACHINE-LEARNING BASED SIMULATION OF FLOW
    • 基于机器学习的流动模拟方法和系统
    • EP2599030A1
    • 2013-06-05
    • EP11812891.7
    • 2011-05-19
    • ExxonMobil Upstream Research Company
    • USADI, AdamLI, DachangPARASHKEVOV, RossenTEREKHOV, Sergey, A.WU, Xiao-huiYANG, Yahan
    • G06G7/48
    • E21B43/00G01V99/005G06F17/5018G06F2217/16G06N3/0427G06N99/005
    • There is provided a method for modeling a hydrocarbon reservoir that includes generating a reservoir model comprising a plurality of coarse grid cells. The method includes generating a fine grid model corresponding to one of the coarse grid cells and simulating the fine grid model using a training simulation to generate a set of training parameters comprising boundary conditions of the coarse grid cell. A machine learning algorithm may be used to generate, based on the set of training parameters, a coarse scale approximation of a phase permeability of the coarse grid cell. The hydrocarbon reservoir can be simulated using the coarse scale approximation of the effective phase permeability generated for the coarse grid cell. The method also includes generating a data representation of a physical hydrocarbon reservoir in a non-transitory, computer-readable, medium based at least in part on the results of the simulation.
    • 提供了一种用于建模碳氢化合物储层的方法,其包括生成包括多个粗栅格单元的储层模型。 该方法包括生成与粗糙网格单元中的一个对应的精细网格模型并且使用训练模拟来模拟精细网格模型以生成包括粗网格单元的边界条件的一组训练参数。 机器学习算法可以用于基于该组训练参数生成粗网格单元的相位导磁率的粗略近似。 可以使用为粗网格单元生成的有效相位渗透率的粗尺度近似来模拟碳氢化合物储层。 该方法还包括至少部分地基于模拟结果在非暂时性计算机可读介质中生成物理碳氢化合物储层的数据表示。