会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • GRAPHENE MEMBRANE WITH REGULAR ANGSTROM-SCALE PORES
    • 具有常规尺寸孔的石墨膜
    • WO2013112164A1
    • 2013-08-01
    • PCT/US2012/022798
    • 2012-01-26
    • EMPIRE TECHNOLOGY DEVELOPMENT, LLCMILLER, Seth, A.DUERKSEN, Gary, L.
    • MILLER, Seth, A.DUERKSEN, Gary, L.
    • G01N33/487
    • B01D53/22B01D69/10B01D71/021B01D2325/02B82Y30/00B82Y40/00
    • Technologies are generally described for perforated graphene monolayers and membranes containing perforated graphene monolayers. An example membrane may include a graphene monolayer having a plurality of discrete pores that may be chemically perforated into the graphene monolayer. The discrete pores may be of substantially uniform pore size. The pore size may be characterized by one or more carbon vacancy defects in the graphene monolayer. The graphene monolayer may have substantially uniform pore sizes throughout. In some examples, the membrane may include a permeable substrate that contacts the graphene monolayer and which may support the graphene monolayer. Such perforated graphene monolayers, and membranes comprising such perforated graphene monolayers may exhibit improved properties compared to conventional polymeric membranes for gas separations, e.g., greater selectivity, greater gas permeation rates, or the like.
    • 通常描述穿孔石墨烯单层和含有穿孔石墨烯单层的膜的技术。 示例性膜可以包括石墨烯单层,其具有可以被化学穿透到石墨烯单层中的多个离散孔。 离散的孔可以具有基本均匀的孔径。 孔径可以由石墨烯单层中的一个或多个碳空位缺陷来表征。 石墨烯单层可以具有基本均匀的孔径。 在一些实例中,膜可以包括接触石墨烯单层并且可以支撑石墨烯单层的可渗透基底。 与用于气体分离的常规聚合物膜相比,这种穿孔的石墨烯单层和包含这种穿孔的石墨烯单层的膜可以表现出改进的性能,例如更大的选择性,更大的气体渗透速率等。
    • 5. 发明申请
    • MULTI-LAYER OPTICAL FILTER DESIGNS AND ASSOCIATED SYSTEMS
    • 多层光学滤波器设计和相关系统
    • WO2008134574A1
    • 2008-11-06
    • PCT/US2008/061657
    • 2008-04-25
    • CDM OPTICS, INC.DUERKSEN, Gary, L.GAO, LuSILVEIRA, Paulo, E.X.
    • DUERKSEN, Gary, L.GAO, LuSILVEIRA, Paulo, E.X.
    • G02B5/28
    • G02B5/201G02B5/28G02B27/0012
    • A method for designing a first optical filter, exhibiting a first filter performance satisfying a first preset criterion, and a second optical filter, exhibiting a second filter performance satisfying a second preset criterion, includes providing initial first and second filter designs for the first and second optical filters, respectively, as first and second ordered stacks of layers, respectively. A pair of layers, including a first layer, characterized by a first thickness, and a second layer, characterized by a second thickness, is selected from the first and second ordered stacks of layers. The first thickness is constrained to a first constrained thickness that is a positive integer multiple of the second thickness to yield a constrained first filter design. A predicted performance of the constrained first filter design is determined and compared with the first preset criterion for one of accepting and rejecting the constrained first filter design.
    • 一种用于设计表现出满足第一预设标准的第一滤波器性能的第一滤光器和表现出满足第二预设标准的第二滤光器性能的第二滤光器的方法,包括提供用于第一和第二滤光器的初始和第二滤光器设计 光滤波器分别作为第一和第二有序的层叠层。 包括第一厚度的第一层,其特征在于第一厚度的一层,其特征在于第二厚度,从第一层和第二层叠层中选择。 第一厚度被约束为第二约束厚度,其是第二厚度的正整数倍,以产生约束的第一过滤器设计。 确定受约束的第一滤波器设计的预测性能,并将其与第一预设标准进行比较,以接受和拒绝受约束的第一滤波器设计。
    • 8. 发明申请
    • GRAPHENE MEMBRANE WITH SIZE-TUNABLE NANOSCALE PORES
    • 具有大小不等的纳米孔的石墨膜
    • WO2014084856A1
    • 2014-06-05
    • PCT/US2012/067392
    • 2012-11-30
    • EMPIRE TECHNOLOGY DEVELOPMENT, LLC
    • MILLER, Seth, A.DUERKSEN, Gary, L.
    • C01B31/04
    • B01D39/2055B01D67/0062B01D69/02B01D69/122B01D71/021B01D2325/021Y10T428/24322
    • Technologies are generally described for a graphene membrane with uniformly-sized nanoscale pores that may be prepared at a desired size using colloidal lithography. A graphene monolayer may be coated with colloidal nanoparticles using self-assembly, followed by off-axis metal layer deposition, for example. The metal layer may form on the colloidal nanoparticles and on portions of the graphene not shadowed by the nanoparticles. The nanoparticles may be removed to leave a negative metal mask that exposes the underlying graphene through holes left by the removed nanospheres. The bare graphene may be etched to create pores using an oxygen plasma or similar material, while leaving metal-masked regions intact. Pore size may be controlled according to size of colloidal nanoparticles and angle of metal deposition relative to the substrate. The process may result in a dense, hexagonally packed array of uniform holes in graphene for use as a membrane, especially in liquid separations.
    • 通常描述具有均匀尺寸的纳米尺度孔的石墨烯膜的技术,其可以使用胶体光刻法以所需尺寸制备。 石墨烯单层可以使用自组装涂覆胶体纳米粒子,然后例如离轴金属层沉积。 金属层可以形成在胶体纳米颗粒上,并且在石墨烯的部分上不被纳米颗粒遮蔽。 可以去除纳米颗粒以留下阴极金属掩模,其通过去除的纳米球留下的孔暴露下面的石墨烯。 可以使用氧等离子体或类似材料蚀刻裸石墨烯以产生孔,同时保留金属掩蔽区。 孔径可以根据胶体纳米粒子的尺寸和相对于基底的金属沉积角来控制。 该方法可能导致石墨烯中密集的六边形排列的均匀孔,用作膜,特别是在液体分离中。
    • 9. 发明申请
    • SELECTIVE MEMBRANE SUPPORTED ON NANOPOROUS GRAPHENE
    • 选择性膜支持纳米石墨
    • WO2014084861A1
    • 2014-06-05
    • PCT/US2012/067467
    • 2012-11-30
    • EMPIRE TECHNOLOGY DEVELOPMENT, LLC
    • MILLER, Seth, AdrianDUERKSEN, Gary, L.
    • B01D61/00
    • B01D69/12B01D67/0037B01D67/006B01D67/0062B01D67/0069B01D69/141B01D69/148B01D71/021B01D71/022B01D71/028B01D71/06B01D2323/42B32B38/0032Y10T156/1056
    • Technologies are generally described for composite membranes that may include a nanoporous graphene layer sandwiched between a first selective membrane and a porous support substrate. The composite membranes may be formed by depositing the selective membrane on one side of the nanoporous graphene layer, while the other side of the nanoporous graphene layer may be supported at a nonporous support substrate. The nanoporous graphene layer may be removed with the selective membrane from the nonporous support substrate and contacted to the porous support substrate to form the composite membranes. By depositing the selective membrane on a flat surface, the nanoporous graphene on the nonporous support substrate, the selective membranes may be produced with reduced defect formation at thicknesses of as little as 0.1 μιη or less. The described composite membranes may have increased permeance compared to thicker selective membranes, and structural strength greater than thin selective membranes alone.
    • 通常描述复合膜的技术,其可以包括夹在第一选择膜和多孔支撑基底之间的纳米多孔石墨烯层。 复合膜可以通过在纳米多孔石墨烯层的一侧上沉积选择性膜而形成,而纳米多孔石墨烯层的另一侧可以被支撑在无孔支撑基底上。 纳米多孔石墨烯层可以用选择性膜从无孔支撑基底去除并与多孔载体基底接触以形成复合膜。 通过将选择性膜沉积在平坦表面上,在无孔支撑衬底上的纳米多孔石墨烯,选择性膜可以以低至0.1微米厚度的缺陷形成减少来生产。 或更少。 与较厚的选择性膜相比,所述复合膜可能具有增加的渗透性,并且结构强度大于单独的薄选择性膜。