会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • PREDICTING DATABASE SYSTEM PERFORMANCE
    • 预测数据库系统性能
    • US20110288847A1
    • 2011-11-24
    • US13187211
    • 2011-07-20
    • Dushyanth NarayananEno Thereska
    • Dushyanth NarayananEno Thereska
    • G06F9/455
    • G06F11/3476G06F11/3419G06F11/3452G06F11/3457G06F2201/815G06F2201/87G06F2201/88G06F2201/885
    • A prediction system may perform capacity planning for one or more resources of a database systems, such as by understanding how different workloads are using the system resources and/or predicting how the performance of the workloads will change when the hardware configuration of the resource is changed and/or when the workload changes. The prediction system may use a detailed, low-level tracing of a live database system running an application workload to monitor the performance of the current database system. In this manner, the current monitoring traces and analysis may be combined with a simulation to predict the workload's performance on a different hardware configuration. More specifically, performance may be indicated as throughput and/or latency, which may be for all transactions, for a particular transaction type, and/or for an individual transaction. Database system performance prediction may include instrumentation and tracing, demand trace extraction, cache simulation, disk scaling, CPU scaling, background activity prediction, throughput analysis, latency analysis, visualization, optimization, and the like.
    • 预测系统可以对数据库系统的一个或多个资源执行容量规划,例如通过了解不同的工作负载如何使用系统资源和/或预测当资源的硬件配置被改变时工作负载的性能将如何改变 和/或工作负载变化时。 预测系统可以使用运行应用程序工作负载的实时数据库系统的详细的低级跟踪来监视当前数据库系统的性能。 以这种方式,当前的监控跟踪和分析可以与模拟结合,以预测不同硬件配置上的工作负载性能。 更具体地,可以将性能指示为吞吐量和/或延迟,其可以针对特定交易类型和/或单个交易的所有交易。 数据库系统性能预测可能包括仪器跟踪,需求跟踪提取,缓存模拟,磁盘缩放,CPU缩放,后台活动预测,吞吐量分析,延迟分析,可视化,优化等。
    • 4. 发明授权
    • Predicting database system performance
    • 预测数据库系统性能
    • US08010337B2
    • 2011-08-30
    • US11116690
    • 2005-04-27
    • Dushyanth NarayananEno Thereska
    • Dushyanth NarayananEno Thereska
    • G06F9/45
    • G06F11/3476G06F11/3419G06F11/3452G06F11/3457G06F2201/815G06F2201/87G06F2201/88G06F2201/885
    • A prediction system may perform capacity planning for one or more resources of a database systems, such as by understanding how different workloads are using the system resources and/or predicting how the performance of the workloads will change when the hardware configuration of the resource is changed and/or when the workload changes. The prediction system may use a detailed, low-level tracing of a live database system running an application workload to monitor the performance of the current database system. In this manner, the current monitoring traces and analysis may be combined with a simulation to predict the workload's performance on a different hardware configuration. More specifically, performance may be indicated as throughput and/or latency, which may be for all transactions, for a particular transaction type, and/or for an individual transaction. Database system performance prediction may include instrumentation and tracing, demand trace extraction, cache simulation, disk scaling, CPU scaling, background activity prediction, throughput analysis, latency analysis, visualization, optimization, and the like.
    • 预测系统可以对数据库系统的一个或多个资源执行容量规划,例如通过了解不同的工作负载如何使用系统资源和/或预测当资源的硬件配置被改变时工作负载的性能将如何改变 和/或工作负载变化时。 预测系统可以使用运行应用程序工作负载的实时数据库系统的详细的低级跟踪来监视当前数据库系统的性能。 以这种方式,当前的监控跟踪和分析可以与模拟结合,以预测不同硬件配置上的工作负载性能。 更具体地,可以将性能指示为吞吐量和/或延迟,其可以针对特定交易类型和/或单个交易的所有交易。 数据库系统性能预测可能包括仪器跟踪,需求跟踪提取,缓存模拟,磁盘缩放,CPU缩放,后台活动预测,吞吐量分析,延迟分析,可视化,优化等。
    • 5. 发明申请
    • Predicting database system performance
    • 预测数据库系统性能
    • US20060074970A1
    • 2006-04-06
    • US11116690
    • 2005-04-27
    • Dushyanth NarayananEno Thereska
    • Dushyanth NarayananEno Thereska
    • G06F7/00G06F17/00
    • G06F11/3476G06F11/3419G06F11/3452G06F11/3457G06F2201/815G06F2201/87G06F2201/88G06F2201/885
    • A prediction system may perform capacity planning for one or more resources of a database systems, such as by understanding how different workloads are using the system resources and/or predicting how the performance of the workloads will change when the hardware configuration of the resource is changed and/or when the workload changes. The prediction system may use a detailed, low-level tracing of a live database system running an application workload to monitor the performance of the current database system. In this manner, the current monitoring traces and analysis may be combined with a simulation to predict the workload's performance on a different hardware configuration. More specifically, performance may be indicated as throughput and/or latency, which may be for all transactions, for a particular transaction type, and/or for an individual transaction. Database system performance prediction may include instrumentation and tracing, demand trace extraction, cache simulation, disk scaling, CPU scaling, background activity prediction, throughput analysis, latency analysis, visualization, optimization, and the like.
    • 预测系统可以对数据库系统的一个或多个资源执行容量规划,例如通过了解不同的工作负载如何使用系统资源和/或预测当资源的硬件配置被改变时工作负载的性能将如何改变 和/或工作负载变化时。 预测系统可以使用运行应用程序工作负载的实时数据库系统的详细的低级跟踪来监视当前数据库系统的性能。 以这种方式,当前的监控跟踪和分析可以与模拟结合,以预测不同硬件配置上的工作负载性能。 更具体地,可以将性能指示为吞吐量和/或延迟,其可以针对特定交易类型和/或单个交易的所有交易。 数据库系统性能预测可能包括仪器跟踪,需求跟踪提取,缓存模拟,磁盘缩放,CPU缩放,后台活动预测,吞吐量分析,延迟分析,可视化,优化等。
    • 8. 发明申请
    • Resource Optimization for Online Services
    • 在线服务的资源优化
    • US20120158858A1
    • 2012-06-21
    • US12969963
    • 2010-12-16
    • Christos GkantsidisThomas KaragiannisDushyanth NarayananAntony Rowstron
    • Christos GkantsidisThomas KaragiannisDushyanth NarayananAntony Rowstron
    • G06F15/16G06F15/173
    • H04L51/22
    • Resource optimization for online services is described. In one example, objects (such as mailboxes or other data associated with an online service) are assigned to network elements (such as servers) by inferring a relationship graph from log data relating to usage of the online service. The graph has a node for each object, and connections between each pair of objects having data items in common. Each connection has a weight relating to the number of common data items. The graph is partitioned into a set of clusters, such that each cluster has nodes joined by connections with a high weight relative to the weight of connections between nodes in different clusters. The objects are then distributed to the network elements such that objects corresponding to nodes in the same cluster are located on the same network element.
    • 描述了在线服务的资源优化。 在一个示例中,通过从与在线服务的使用相关的日志数据推断关系图,将对象(诸如邮箱或与在线服务相关联的其他数据)分配给网络元件(例如服务器)。 该图具有每个对象的节点,以及具有共同数据项的每对对象之间的连接。 每个连接具有与公共数据项的数量相关的权重。 该图被划分成一组集群,使得每个集群具有通过具有相对于不同集群中的节点之间的连接的权重的高权重的连接而连接的节点。 然后将对象分发到网络元件,使得与相同集群中的节点相对应的对象位于同一网络元件上。
    • 9. 发明授权
    • Resource optimization for online services
    • 在线服务资源优化
    • US08819236B2
    • 2014-08-26
    • US12969963
    • 2010-12-16
    • Christos GkantsidisThomas KaragiannisDushyanth NarayananAntony Rowstron
    • Christos GkantsidisThomas KaragiannisDushyanth NarayananAntony Rowstron
    • G06F15/16G06F15/173
    • H04L51/22
    • Resource optimization for online services is described. In one example, objects (such as mailboxes or other data associated with an online service) are assigned to network elements (such as servers) by inferring a relationship graph from log data relating to usage of the online service. The graph has a node for each object, and connections between each pair of objects having data items in common. Each connection has a weight relating to the number of common data items. The graph is partitioned into a set of clusters, such that each cluster has nodes joined by connections with a high weight relative to the weight of connections between nodes in different clusters. The objects are then distributed to the network elements such that objects corresponding to nodes in the same cluster are located on the same network element.
    • 描述了在线服务的资源优化。 在一个示例中,通过从与在线服务的使用相关的日志数据推断关系图,将对象(诸如邮箱或与在线服务相关联的其他数据)分配给网络元件(例如服务器)。 该图具有每个对象的节点,以及具有共同数据项的每对对象之间的连接。 每个连接具有与公共数据项的数量相关的权重。 该图被划分成一组集群,使得每个集群具有通过具有相对于不同集群中的节点之间的连接的权重的高权重的连接而连接的节点。 然后将对象分发到网络元件,使得与相同集群中的节点相对应的对象位于同一网络元件上。