会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Technique for compensation of transmit leakage in radar receiver
    • 雷达接收机传输泄漏补偿技术
    • US20060273952A1
    • 2006-12-07
    • US11144131
    • 2005-06-03
    • Kapriel KrikorianRobert Rosen
    • Kapriel KrikorianRobert Rosen
    • G01S13/00G01S7/28
    • H04B1/525G01S7/038G01S7/352G01S13/32G01S2007/356
    • A radar system (500) radiates a radar transmit signal, has a radar signal receiver (503) and a canceller (505) for canceling leakage of the transmit signal into the radar signal receiver (503). The canceller (505) comprises a digital waveform generator (528) for generating a first digital signal converted to an analog waveform. The analog waveform is amplified after a fixed delay (534) to generate a first cancellation signal input into a circulator (504). The circulator combines the first cancellation signal with the leakage to generate a first corrected signal. A summer (507) combines the first corrected signal from the circulator with a second cancellation signal to generate a second corrected signal. The second cancellation signal is generated by a digital cancellation filter (526). The digital cancellation filter (526) has as an input the first digital signal from the digital waveform generator (528). The digital cancellation filter (526) is controlled using weight adjustments computed by an adaptive weight processor (518). The adaptive weight processor (518) samples the second corrected signal and computes the weight adjustments to optimize the second cancellation signal.
    • 雷达系统(500)辐射雷达发射信号,具有用于消除发射信号泄漏到雷达信号接收机(503)中的雷达信号接收机(503)和消除器(505)。 消除器(505)包括用于产生转换为模拟波形的第一数字信号的数字波形发生器(528)。 模拟波形在固定延迟(534)之后被放大,以产生输入循环器(504)的第一消除信号。 循环器将第一抵消信号与泄漏组合以产生第一校正信号。 夏季(507)将来自循环器的第一校正信号与第二消除信号组合以产生第二校正信号。 第二消除信号由数字消除滤波器(526)产生。 数字消除滤波器(526)具有来自数字波形发生器(528)的第一数字信号作为输入。 使用由自适应加权处理器(518)计算的权重调整来控制数字消除滤波器(526)。 自适应加权处理器(518)对第二校正信号进行采样并计算加权调整以优化第二消除信号。
    • 5. 发明授权
    • Launcher control system
    • 启动器控制系统
    • US5118050A
    • 1992-06-02
    • US568298
    • 1990-08-16
    • Keith P. ArnoldLawrence A. HummHan S. PanI-Ping YuRobert Rosen
    • Keith P. ArnoldLawrence A. HummHan S. PanI-Ping YuRobert Rosen
    • F41A31/00F41F3/04F41F3/06F41G7/30F42B15/01G01S13/88
    • F41G7/306
    • In a weapon system 10 incorporating a target position sensor (14), an information system (16), a power source (22), a launcher (20), and an airborne vehicle (18), a launcher control system (12) which incorporates a communications interface (26) for coupling the information system (16) and the target position sensor (14) to a launcher (20) and an airborne vehicle (18). The communications interface (26) receives target position information and launch and control orders and provides launcher and airborne vehicle status. A airborne vehicle interface (28) couples the launcher (20) and the airborne vehicle (18) to the information system (16) and a power source (22). A transmitter (30) communicates updated target position information to the airborne vehicle after launch. A power control unit (32) converts and regulates power from different power sources (22) to be used by the launcher control system (12). The launcher (20) with launcher control system (12) is preferably modular in construction and is separate from the information system (16) and target position sensor (14).
    • 在装有目标位置传感器(14),信息系统(16),电源(22),发射器(20)和机载车辆(18)的武器系统10中,发射器控制系统(12) 包括用于将信息系统(16)和目标位置传感器(14)耦合到发射器(20)和机载车辆(18)的通信接口(26)。 通信接口(26)接收目标位置信息和发射和控制命令,并提供发射器和机载车辆状态。 机载车辆接口(28)将发射器(20)和机载车辆(18)耦合到信息系统(16)和电源(22)。 发射机(30)在发射后将更新的目标位置信息传送到机载车辆。 功率控制单元(32)转换并调节来自不同电源(22)的功率,由发射器控制系统(12)使用。 具有发射器控制系统(12)的发射器(20)优选地是模块化的结构,并且与信息系统(16)和目标位置传感器(14)分离。
    • 7. 发明申请
    • Hand-Held Dual-Magnification Dermatoscope
    • 手持式双倍放大皮肤镜
    • US20140012137A1
    • 2014-01-09
    • US13543709
    • 2012-07-06
    • Robert Rosen
    • Robert Rosen
    • A61B6/00
    • A61B5/441A61B5/0077
    • A one-piece hand-held dermatoscope have two magnifier lenses, a larger rectangular-shaped lens between two and three times magnification power, and a smaller circular lens between eight and 15 times magnification power. A polarizer is position between the lens and a patient's skin. In one embodiment, the polarizer is radial, such that cross-polarization is achieved when the light reflect off the skin and passes through it a second time. In another embodiment, the portion of the polarizer through which the light passes to the skin is linear in a first direction, and the portion through which the light passes back from the skin is linear in a second direction that is perpendicular to the first direction, enabling cross-polarization.
    • 一件式手持式皮肤镜具有两个放大镜透镜,两倍和三倍放大倍数之间的较大矩形透镜,以及8-15倍放大倍数之间的较小圆形透镜。 偏振器位于透镜和患者皮肤之间。 在一个实施例中,偏振器是径向的,使得当光反射离开皮肤并经过第二次时,实现交叉极化。 在另一个实施例中,光穿过皮肤的偏振器部分在第一方向是线性的,并且光从皮肤返回的部分在垂直于第一方向的第二方向上是线性的, 实现交叉极化。
    • 9. 发明申请
    • Technique for accurate estimate of large antenna inertial two dimensional orientation using relative GPS spatial phase
    • US20070126629A1
    • 2007-06-07
    • US11294227
    • 2005-12-05
    • Kapriel KrikorianRobert Rosen
    • Kapriel KrikorianRobert Rosen
    • G01S5/02H01Q3/00
    • H01Q19/132G01S19/54
    • A radar antenna has a reflector and maximum gain along its boresight. The reflector has a periphery, typically circular, rectangular or elliptical. A plurality of Global Positioning System (GPS) satellite signal receiving antennas are rigidly, mechanically attached to the reflector near its periphery. The plurality of GPS satellite signal receiving antennas are connected pairwise to a phase comparator for comparing a plurality of first phase differences induced by a first GPS satellite signal received concurrently between the plurality of GPS satellite signal receiving antennas. A Phase comparator measures the phase difference of the signal received at GPS satellite signal receiving antennas pairwise thus performing a differential phase measurement. This differential phase measurement is supplied to a computer for identifying an ambiguous boresight position using the phase differences measured by the phase comparator. The position of the GPS satellites is known with respect to the geo-location of the antenna. Thus, the boresight angle is derived from the phase difference of the carrier signal from the GPS satellite being received and the mechanical alignment information between the GPS satellite receiving antennas and radar antenna boresight stored during calibration/manufacture of the radar antenna. The ambiguity in the computed boresight position is resolved by making differential phase readings using the same GPS antennas from a second GPS satellite signal supplied by a second satellite.