会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Low noise and high performance LSI device
    • 低噪声,高性能的LSI器件
    • US08816440B2
    • 2014-08-26
    • US12984261
    • 2011-01-04
    • Shigenobu MaedaJeong Hwan Yang
    • Shigenobu MaedaJeong Hwan Yang
    • H01L29/94H01L31/062H01L31/113
    • H01L27/0922H01L21/823412H01L21/823418H01L21/823807H01L21/823814H01L27/0207H01L27/092H01L27/1052H01L29/0649H01L29/665H01L29/7833H01L29/7842H01L29/7843H01L29/7845H01L29/7848
    • In semiconductor devices in which both NMOS devices and PMOS devices are used to perform in different modes such as analog and digital modes, stress engineering is selectively applied to particular devices depending on their required operational modes. That is, the appropriate mechanical stress, i.e., tensile or compressive, can be applied to and/or removed from devices, i.e., NMOS and/or PMOS devices, based not only on their conductivity type, i.e., n-type or p-type, but also on their intended operational application, for example, analog/digital, low-voltage/high-voltage, high-speed/low-speed, noise-sensitive/noise-insensitive, etc. The result is that performance of individual devices is optimized based on the mode in which they operate. For example, mechanical stress can be applied to devices that operate in high-speed digital settings, while devices that operate in analog or RF signal settings, in which electrical noise such as flicker noise that may be introduced by applied stress may degrade performance, have no stress applied.
    • 在其中使用NMOS器件和PMOS器件的半导体器件中,以不同的模式(例如模拟和数字模式)来执行应力工程,根据所需的操作模式,对特定器件有选择地施加应力工程。 也就是说,适当的机械应力,即拉伸或压缩,可以施加到和/或从设备(即,NMOS和/或PMOS器件)中去除和/或从器件去除,不仅基于它们的导电类型,即n型或p- 类型,而且还在于其预期的操作应用,例如模拟/数字,低电压/高电压,高速/低速,噪声敏感/噪声不敏感等。结果是个体的性能 设备根据其运行模式进行优化。 例如,机械应力可以应用于在高速数字设置中工作的设备,而在模拟或RF信号设置中工作的设备,其中可能由施加的应力引入的诸如闪烁噪声的电噪声可能降低性能,具有 没有施加应力。
    • 6. 发明授权
    • Semiconductor MIS transistor formed on SOI semiconductor substrate
    • 半导体MIS晶体管形成在SOI半导体衬底上
    • US07531878B2
    • 2009-05-12
    • US11610932
    • 2006-12-14
    • Shigenobu MaedaShigeto MaegawaTakuji Matsumoto
    • Shigenobu MaedaShigeto MaegawaTakuji Matsumoto
    • H01L27/01H01L27/12H01L31/0392
    • H01L29/045H01L21/84H01L27/1203H01L29/1087H01L29/66772H01L29/78603H01L29/78615H01L29/78621H01L29/78654H01L29/78687H01L29/78696
    • There is provided a semiconductor device which is formed on a semiconductor substrate and allows effective use of the feature of the semiconductor substrate, and there is also provided a method of manufacturing the same. An N-channel MOS transistor including a P-type body layer (3a), and a P-type active layer (6) for body voltage application which is in contact with the P-type body layer (3a) are formed on an SOI substrate which is formed to align a crystal direction of a support substrate (1) with a crystal direction of an SOI layer (3). A path connecting the P-type body layer (3a) and the P-type active layer (6) for body voltage application is aligned parallel to the crystal direction of the SOI layer (3). Since hole mobility is higher in the crystal direction, parasitic resistance (Ra, Rb) can be reduced in the above path. This speeds up voltage transmission to the P-type body layer (3a) and improves voltage fixing capability in the P-type body layer (3a).
    • 提供一种半导体器件,其形成在半导体衬底上并且有效地利用了半导体衬底的特征,并且还提供了一种制造该半导体衬底的方法。 包括P型体层(3a)和与P型体层(3a)接触的体电压施加用P型有源层(6)的N沟道MOS晶体管形成在SOI 衬底,其被形成为使支撑衬底(1)的<110>晶体方向与SOI层(3)的<100>晶体方向对准。 连接P型体层(3a)和用于体电压施加的P型有源层(6)的路径平行于SOI层(3)的<100>晶体方向排列。 由于在<100>晶体方向的空穴迁移率较高,所以在上述路径中可以减小寄生电阻(Ra,Rb)。 这加快了P型体层(3a)的电压传输,提高了P型体层(3a)的电压固定能力。
    • 9. 发明申请
    • Low noise and high performance LSI device, layout and manufacturing method
    • 低噪声,高性能的LSI器件,布局和制造方法
    • US20080099786A1
    • 2008-05-01
    • US12004290
    • 2007-12-20
    • Shigenobu MaedaJeong Yang
    • Shigenobu MaedaJeong Yang
    • H01L27/092
    • H01L27/0922H01L21/823412H01L21/823418H01L21/823807H01L21/823814H01L27/0207H01L27/092H01L27/1052H01L29/0649H01L29/665H01L29/7833H01L29/7842H01L29/7843H01L29/7845H01L29/7848
    • In semiconductor devices in which both NMOS devices and PMOS devices are used to perform in different modes such as analog and digital modes, stress engineering is selectively applied to particular devices depending on their required operational modes. That is, the appropriate mechanical stress, i.e., tensile or compressive, can be applied to and/or removed from devices, i.e., NMOS and/or PMOS devices, based not only on their conductivity type, i.e., n-type or p-type, but also on their intended operational application, for example, analog/digital, low-voltage/high-voltage, high-speed/low-speed, noise-sensitive/noise-insensitive, etc. The result is that performance of individual devices is optimized based on the mode in which they operate. For example, mechanical stress can be applied to devices that operate in high-speed digital settings, while devices that operate in analog or RF signal settings, in which electrical noise such as flicker noise that may be introduced by applied stress may degrade performance, have no stress applied.
    • 在其中使用NMOS器件和PMOS器件的半导体器件中,以不同的模式(例如模拟和数字模式)来执行应力工程,根据所需的操作模式,对特定器件有选择地施加应力工程。 也就是说,适当的机械应力,即拉伸或压缩,可以施加到和/或从设备(即,NMOS和/或PMOS器件)中去除和/或从器件去除,不仅基于它们的导电类型,即n型或p- 类型,而且还在于其预期的操作应用,例如模拟/数字,低电压/高电压,高速/低速,噪声敏感/噪声不敏感等。结果是个体的性能 设备根据其运行模式进行优化。 例如,机械应力可以应用于在高速数字设置中工作的设备,而在模拟或RF信号设置中工作的设备,其中可能由施加的应力引入的诸如闪烁噪声的电噪声可能降低性能,具有 没有施加应力。
    • 10. 发明申请
    • SEMICONDUCTOR WAFER AND MANUFACTURING METHOD THEREOF
    • 半导体晶圆及其制造方法
    • US20080032486A1
    • 2008-02-07
    • US11868143
    • 2007-10-05
    • Toshiaki IwamatsuShigenobu Maeda
    • Toshiaki IwamatsuShigenobu Maeda
    • H01L21/30
    • H01L21/76243H01L21/02027H01L21/67092H01L21/68H01L21/76254H01L21/76256H01L23/544H01L29/045H01L29/78606H01L29/78654H01L29/78696H01L2223/54453H01L2223/54493H01L2924/0002H01L2924/00
    • A semiconductor wafer manufacturing method comprising the steps of preparing a first semiconductor wafer having a plurality of cuts formed at edge portions in crystal directions, preparing a second semiconductor wafer having a cut formed at an edge portion in a crystal direction that is different from the crystal direction of one of said plurality of cuts of said first semiconductor wafer, bonding said first and second semiconductor wafers to each other while using said one of said plurality of cuts of said first semiconductor wafer and said cut of said second semiconductor wafer in order to position said first and second semiconductor wafers, with another one of said plurality of cuts of said first semiconductor wafer being engaged with a guide portion of a semiconductor wafer manufacturing apparatus, thinning said first semiconductor wafer, implanting oxygen ions from said first semiconductor wafer side into a neighborhood of a part where said first and second semiconductor wafers are bonded to each other, and forming the portion implanted with the oxygen ions into an oxide film layer by a thermal treatment.
    • 一种半导体晶片制造方法,包括以下步骤:制备在晶体方向上形成有多个切口的第一半导体晶片,所述第一半导体晶片具有在晶体方向上不同晶体的边缘部分处形成的切口的第二半导体晶片 所述第一半导体晶片的所述多个切口中的一个切口的方向,将所述第一和第二半导体晶片彼此接合,同时使用所述第一半导体晶片的所述多个切口和所述第二半导体晶片的所述切口中的所述一个切口以便定位 所述第一和第二半导体晶片,所述第一半导体晶片的所述多个切口中的另一个与半导体晶片制造设备的引导部分接合,使所述第一半导体晶片变薄,将氧离子从所述第一半导体晶片侧注入到 所述第一和第二半导体晶片的部分附近 e彼此键合,并且通过热处理将注入氧离子的部分形成氧化物膜层。