会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • System and Method for Magnetic Resonance Imaging Water-Fat Separation with Full Dynamic Range Using In-Phase Images
    • 使用同相图像的全动态范围的磁共振成像水脂分离的系统和方法
    • US20130214781A1
    • 2013-08-22
    • US13400343
    • 2012-02-20
    • Diego HernandoScott B. Reeder
    • Diego HernandoScott B. Reeder
    • G01R33/48
    • G01R33/4828G01R33/5615
    • A magnetic resonance imaging (“MRI”) system and method for producing an image of a subject with the MRI system in which signal contributions of water and fat are separated are provided. A plurality of in-phase echoes formed at a plurality of different echo times are sampled to acquire k-space data. The in-phase echoes include signal contributions from water and fat that are in-phase with each other. The signal contributions from water and fat are then separated by fitting only those echo signals that are in-phase echo signals to a signal model that models a fat spectrum as including multiple resonance peaks. From these signal contributions, an image of the subject depicting a desired amount of signal contribution from water and a desired amount of signal contribution is produced.
    • 提供了一种磁共振成像(“MRI”)系统和用于产生具有分离了水分和脂肪的信号贡献的MRI系统的受试者的图像的方法。 在多个不同回波时间形成的多个同相回波被采样以获取k空间数据。 同相回波包括彼此同相的来自水和脂肪的信号贡献。 然后通过仅将那些作为同相回波信号的回波信号与仅将脂肪谱模拟成包含多个共振峰的信号模型分离,从而分离水和脂肪的信号。 根据这些信号贡献,产生描绘从水中所需量的信号贡献和所需量的信号贡献的被摄体的图像。
    • 2. 发明授权
    • System and method for magnetic resonance imaging water-fat separation with full dynamic range using in-phase images
    • 使用同相图像的全动态范围的磁共振成像水脂分离系统和方法
    • US08957681B2
    • 2015-02-17
    • US13400343
    • 2012-02-20
    • Diego HernandoScott B Reeder
    • Diego HernandoScott B Reeder
    • G01V3/00
    • G01R33/4828G01R33/5615
    • A magnetic resonance imaging (“MRI”) system and method for producing an image of a subject with the MRI system in which signal contributions of water and fat are separated are provided. A plurality of in-phase echoes formed at a plurality of different echo times are sampled to acquire k-space data. The in-phase echoes include signal contributions from water and fat that are in-phase with each other. The signal contributions from water and fat are then separated by fitting only those echo signals that are in-phase echo signals to a signal model that models a fat spectrum as including multiple resonance peaks. From these signal contributions, an image of the subject depicting a desired amount of signal contribution from water and a desired amount of signal contribution is produced.
    • 提供了一种磁共振成像(“MRI”)系统和用于产生具有分离了水分和脂肪的信号贡献的MRI系统的受试者的图像的方法。 在多个不同回波时间形成的多个同相回波被采样以获取k空间数据。 同相回波包括彼此同相的来自水和脂肪的信号贡献。 然后通过仅将那些作为同相回波信号的回波信号与仅将脂肪谱模拟成包含多个共振峰的信号模型分离,从而分离水和脂肪的信号。 根据这些信号贡献,产生描绘从水中所需量的信号贡献和所需量的信号贡献的被摄体的图像。
    • 3. 发明申请
    • Method for Correcting Motion-Induced Phase Errors In Magnetic Resonance Imaging
    • 用于校正磁共振成像中运动诱导相位误差的方法
    • US20130181712A1
    • 2013-07-18
    • US13350445
    • 2012-01-13
    • Bradley SuttonAnh VanDiego Hernando
    • Bradley SuttonAnh VanDiego Hernando
    • G01R33/48
    • G01R33/56341G01R33/56509G01R33/5676
    • A method for correcting motion-induced phase errors in diffusion-weighted k-space data acquired with a magnetic resonance imaging (MRI) system is provided. The MRI system is directed to acquire the following data from an imaging volume: three-dimensional diffusion-weighted k-space data, three-dimensional diffusion-weighted navigator data, three-dimensional non-diffusion-weighted k-space data, and three-dimensional non-diffusion-weighted navigator data. Initial estimates of k-space shift values and a constant phase offset value are calculated using the three-dimensional diffusion-weighted navigator data and the three-dimensional non-diffusion-weighted navigator data. These initial k-space shift values and constant phase offset value are then updated by iteratively minimizing a cost function that relates the phase of the diffusion-weighted k-space data to the phase of the non-diffusion-weighted k-space data, as shifted by the initial k-space shift values and constant phase offset value. The diffusion-weighted k-space data is then corrected for motion-induced phase errors using the updated k-space shift values and constant phase offset value.
    • 提供了一种用于校正用磁共振成像(MRI)系统获取的扩散加权k空间数据中的运动引起的相位误差的方法。 MRI系统旨在从成像体积获取以下数据:三维扩散加权k空间数据,三维扩散加权导航仪数据,三维非扩散加权k空间数据和三维 维度非扩散加权导航器数据。 使用三维扩散加权导航器数据和三维非扩散加权导航器数据来计算k空间位移值和恒定相位偏移值的初始估计。 然后通过迭代地最小化将扩散加权k空间数据的相位与非扩散加权的k空间数据的相位相关联的成本函数来更新这些初始k空间移位值和恒定相位偏移值,如 偏移初始k空间位移值和恒定相位偏移值。 然后使用更新的k空间位移值和恒定相位偏移值来校正用于运动相位误差的扩散加权k空间数据。
    • 4. 发明申请
    • METHOD FOR ERROR COMPENSATED CHEMICAL SPECIES SIGNAL SEPARATION WITH MAGNETIC RESONANCE IMAGING
    • 错误补偿化学物质信号分离与磁共振成像方法
    • US20120268120A1
    • 2012-10-25
    • US13089512
    • 2011-04-19
    • Diego Hernando
    • Diego Hernando
    • G01R33/48
    • G01R33/4828G01R33/56518
    • A method for producing an image of a subject with a magnetic resonance imaging (“MRI”) system, in which relative signal contributions from a plurality of different chemical species are separated, is provided. A plurality of different echo signals occurring at a respective plurality of different echo times are acquired with the MRI system and a signal model that accounts for relative signal components for each of a plurality of different chemical species is formed for each echo signal. Those echo signals containing errors, such as phase errors, magnitude errors, or errors indicative of a corrupted echo signal, are identified. The relative signal components for each of the plurality of different chemical species are then determined by fitting the echo signals with the signal model. Particularly, those echo signals identified as containing errors are fitted to the signal models in a manner that discards the error-containing information.
    • 提供了一种用于产生具有磁共振成像(MRI)系统的受试者的图像的方法,其中来自多个不同化学物质的相对信号贡献被分离。 利用MRI系统获取在相应的多个不同回波时间出现的多个不同的回波信号,并且为每个回波信号形成考虑多个不同化学物种中的每一个的相对信号分量的信号模型。 识别包含错误的那些回波信号,例如相位误差,幅度误差或指示损坏的回波信号的误差。 然后通过将回波信号与信号模型拟合来确定多个不同化学物种中的每一个的相对信号分量。 特别地,将识别为包含错误的回波信号以丢弃含错误信息的方式拟合到信号模型中。
    • 5. 发明授权
    • Method for correcting motion-induced phase errors in magnetic resonance imaging
    • 用于校正磁共振成像中运动引起的相位误差的方法
    • US08975895B2
    • 2015-03-10
    • US13350445
    • 2012-01-13
    • Bradley SuttonAnh VanDiego Hernando
    • Bradley SuttonAnh VanDiego Hernando
    • G01R33/48G01R33/563G01R33/565G01R33/567
    • G01R33/56341G01R33/56509G01R33/5676
    • A method for correcting motion-induced phase errors in diffusion-weighted k-space data acquired with a magnetic resonance imaging (MRI) system is provided. The MRI system is directed to acquire the following data from an imaging volume: three-dimensional diffusion-weighted k-space data, three-dimensional diffusion-weighted navigator data, three-dimensional non-diffusion-weighted k-space data, and three-dimensional non-diffusion-weighted navigator data. Initial estimates of k-space shift values and a constant phase offset value are calculated using the three-dimensional diffusion-weighted navigator data and the three-dimensional non-diffusion-weighted navigator data. These initial k-space shift values and constant phase offset value are then updated by iteratively minimizing a cost function that relates the phase of the diffusion-weighted k-space data to the phase of the non-diffusion-weighted k-space data, as shifted by the initial k-space shift values and constant phase offset value. The diffusion-weighted k-space data is then corrected for motion-induced phase errors using the updated k-space shift values and constant phase offset value.
    • 提供了一种用于校正用磁共振成像(MRI)系统获取的扩散加权k空间数据中的运动引起的相位误差的方法。 MRI系统旨在从成像体积获取以下数据:三维扩散加权k空间数据,三维扩散加权导航数据,三维非扩散加权k空间数据和三维 维度非扩散加权导航器数据。 使用三维扩散加权导航器数据和三维非扩散加权导航器数据来计算k空间位移值和恒定相位偏移值的初始估计。 然后通过迭代地最小化将扩散加权k空间数据的相位与非扩散加权的k空间数据的相位相关联的成本函数来更新这些初始k空间移位值和恒定相位偏移值,如 偏移初始k空间位移值和恒定相位偏移值。 然后使用更新的k空间位移值和恒定相位偏移值来校正用于运动相位误差的扩散加权k空间数据。
    • 7. 发明授权
    • Method for R2* quantification with magnetic resonance imaging
    • 方法R2 *定量与磁共振成像
    • US08854038B2
    • 2014-10-07
    • US13089653
    • 2011-04-19
    • Diego HernandoScott Brian Reeder
    • Diego HernandoScott Brian Reeder
    • G01R33/48G01R33/50G01R33/565
    • G01R33/50G01R33/4828G01R33/56536G01R33/56563
    • A method for measuring transverse relaxation rate, R2*, corrected for the presence of macroscopic magnetic field inhomogeneities with a magnetic resonance imaging (MRI) system is provided. The method accounts for additional signal decay that occurs as a result of macroscopic variations in the main magnetic field, B0, of the MRI system, and also mitigates susceptibility-based errors and introduction of increased noise in the R2* measurements. Image data are acquired by sampling multiple different echo signals occurring at respectively different echo times. A B0 field inhomogeneity map is estimated by fitting the acquired image data to an initial signal model. Using the estimated field map, a revised signal model that accounts for signal from multiple different chemical species and for signal decay resulting from macroscopic variations in the B0 field is formed. Corrected R2* values for the different chemical species are then estimated by fitting the acquired image data to the revised signal model.
    • 提供了一种通过磁共振成像(MRI)系统测量横向松弛率R2 *的方法,该方法用于存在宏观磁场不均匀性而被校正。 该方法考虑到由于MRI系统的主磁场B0的宏观变化而发生的附加信号衰减,并且还缓解了基于敏感性的误差以及在R2 *测量中引入增加的噪声。 通过对在不同回波时间发生的多个不同的回波信号进行采样来获取图像数据。 通过将所获取的图像数据拟合到初始信号模型来估计B0场不均匀性图。 使用估计的场图,形成了考虑来自多个不同化学物质的信号的修正信号模型以及由B0场中的宏观变化引起的信号衰减。 然后通过将获取的图像数据拟合到修订的信号模型来估计不同化学物种的修正的R2 *值。
    • 8. 发明申请
    • METHOD FOR R*2 QUANTIFICATION WITH MAGNETIC RESONANCE IMAGING
    • 用于磁共振成像的R * 2量化方法
    • US20120268121A1
    • 2012-10-25
    • US13089653
    • 2011-04-19
    • Diego HernandoScott Brian Reeder
    • Diego HernandoScott Brian Reeder
    • G01R33/48
    • G01R33/50G01R33/4828G01R33/56536G01R33/56563
    • A method for measuring transverse relaxation rate, R2*, corrected for the presence of macroscopic magnetic field inhomogeneities with a magnetic resonance imaging (MRI) system is provided. The method accounts for additional signal decay that occurs as a result of macroscopic variations in the main magnetic field, B0, of the MRI system, and also mitigates susceptibility-based errors and introduction of increased noise in the R2* measurements. Image data are acquired by sampling multiple different echo signals occurring at respectively different echo times. A B0 field inhomogeneity map is estimated by fitting the acquired image data to an initial signal model. Using the estimated field map, a revised signal model that accounts for signal from multiple different chemical species and for signal decay resulting from macroscopic variations in the B0 field is formed. Corrected R2* values for the different chemical species are then estimated by fitting the acquired image data to the revised signal model.
    • 提供了一种通过磁共振成像(MRI)系统测量横向松弛率R2 *的方法,该方法用于存在宏观磁场不均匀性而被校正。 该方法考虑到由于MRI系统的主磁场B0的宏观变化而发生的附加信号衰减,并且还缓解了基于敏感性的误差以及在R2 *测量中引入增加的噪声。 通过对在不同回波时间发生的多个不同的回波信号进行采样来获取图像数据。 通过将所获取的图像数据拟合到初始信号模型来估计B0场不均匀性图。 使用估计的场图,形成了考虑了来自多个不同化学物质的信号的修正信号模型以及由B0场中的宏观变化引起的信号衰减。 然后通过将获取的图像数据拟合到修订的信号模型来估计不同化学物种的修正的R2 *值。