会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Automatic dust removal in digital images
    • 数字图像中自动除尘
    • US08351736B2
    • 2013-01-08
    • US12476514
    • 2009-06-02
    • Denis DemandolxEric Paul BennettAntonio CriminisiVladimir FarbmanSteven James White
    • Denis DemandolxEric Paul BennettAntonio CriminisiVladimir FarbmanSteven James White
    • G06K9/40G06T5/00
    • H04N5/3572H04N5/367H04N9/045
    • Methods and a processing device are provided for restoring pixels damaged by artifacts caused by dust, or other particles, entering a digital image capturing device. A user interface may be provided for a user to indicate an approximate location of an artifact appearing in a digital image. Dust attenuation may be estimated and an inverse transformation, based on the estimated dust attenuation, may be applied to damaged pixels in order to recover an estimate of the underlying digital image. One or many candidate source patch may be selected based on having smallest pixel distances, with respect to a target patch area. The damaged pixels included in the target patch area may be considered when calculating the pixel distance with respect to candidate source patches. RGB values of corresponding pixels of source patches may be used to restore the damaged pixels included in the target patch area.
    • 提供了方法和处理装置,用于恢复由于灰尘或其他颗粒引起的伪影所损坏的像素进入数字图像捕获装置。 可以为用户提供用户界面来指示出现在数字图像中的人造物的大致位置。 可以估计灰尘衰减,并且可以将基于估计的灰尘衰减的逆变换应用于损坏的像素,以便恢复底层数字图像的估计。 可以基于相对于目标贴片区域具有最小像素距离来选择一个或多个候选源贴片。 当计算相对于候选源贴片的像素距离时,可以考虑包括在目标贴片区域中的损伤像素。 可以使用源贴片的相应像素的RGB值来恢复包括在目标贴片区域中的损伤像素。
    • 2. 发明申请
    • Automatic Dust Removal In Digital Images
    • 数字图像中自动除尘
    • US20100303380A1
    • 2010-12-02
    • US12476514
    • 2009-06-02
    • Denis DemandolxEric Paul BennettAntonio CriminisiValadimir FarbmanSteven James White
    • Denis DemandolxEric Paul BennettAntonio CriminisiValadimir FarbmanSteven James White
    • G06K9/40
    • H04N5/3572H04N5/367H04N9/045
    • Methods and a processing device are provided for restoring pixels damaged by artifacts caused by dust, or other particles, entering a digital image capturing device. A user interface may be provided for a user to indicate an approximate location of an artifact appearing in a digital image. Dust attenuation may be estimated and an inverse transformation, based on the estimated dust attenuation, may be applied to damaged pixels in order to recover an estimate of the underlying digital image. One or many candidate source patch may be selected based on having smallest pixel distances, with respect to a target patch area. The damaged pixels included in the target patch area may be considered when calculating the pixel distance with respect to candidate source patches. RGB values of corresponding pixels of source patches may be used to restore the damaged pixels included in the target patch area.
    • 提供了方法和处理装置,用于恢复由于灰尘或其他颗粒引起的伪影所损坏的像素进入数字图像捕获装置。 可以为用户提供用户界面来指示出现在数字图像中的人造物的大致位置。 可以估计灰尘衰减,并且可以将基于估计的灰尘衰减的逆变换应用于损坏的像素,以便恢复底层数字图像的估计。 可以基于相对于目标贴片区域具有最小像素距离来选择一个或多个候选源贴片。 当计算相对于候选源贴片的像素距离时,可以考虑包括在目标贴片区域中的损伤像素。 可以使用源贴片的相应像素的RGB值来恢复包括在目标贴片区域中的损伤像素。
    • 5. 发明申请
    • SEMI-SUPERVISED RANDOM DECISION FORESTS FOR MACHINE LEARNING
    • 半自动监控机器学习的随机决策林
    • US20130346346A1
    • 2013-12-26
    • US13528876
    • 2012-06-21
    • Antonio CriminisiJamie Daniel Joseph Shotton
    • Antonio CriminisiJamie Daniel Joseph Shotton
    • G06F15/18
    • G06N99/005G06N5/02G06N7/005
    • Semi-supervised random decision forests for machine learning are described, for example, for interactive image segmentation, medical image analysis, and many other applications. In examples, a random decision forest comprising a plurality of hierarchical data structures is trained using both unlabeled and labeled observations. In examples, a training objective is used which seeks to cluster the observations based on the labels and similarity of the observations. In an example, a transducer assigns labels to the unlabeled observations on the basis of the clusters and certainty information. In an example, an inducer forms a generic clustering function by counting examples of class labels at leaves of the trees in the forest. In an example, an active learning module identifies regions in a feature space from which the observations are drawn using the clusters and certainty information; new observations from the identified regions are used to train the random decision forest.
    • 描述了用于机器学习的半监督随机决策树,例如用于交互式图像分割,医学图像分析和许多其他应用。 在示例中,使用未标记和标记的观察来训练包括多个分级数据结构的随机决策林。 在实例中,使用了一个训练目标,其目的是根据观察结果的标签和相似性对观测进行聚类。 在一个示例中,传感器基于集群和确定性信息将标签分配给未标记的观察。 在一个例子中,诱导者通过计算森林中树的树叶上的类标签的示例来形成通用聚类函数。 在一个示例中,主动学习模块识别特征空间中的区域,使用聚类和确定性信息从中绘制观察值; 来自确定地区的新观察用于训练随机决策林。
    • 6. 发明申请
    • RECOGNIZING HAND POSES AND/OR OBJECT CLASSES
    • 识别手势和/或对象类
    • US20120087575A1
    • 2012-04-12
    • US13326166
    • 2011-12-14
    • John WinnAntonio CriminisiAnkur AgarwalThomas Deselaers
    • John WinnAntonio CriminisiAnkur AgarwalThomas Deselaers
    • G06K9/62
    • G06K9/00355G06F3/017G06F3/0425G06K9/6282
    • There is a need to provide simple, accurate, fast and computationally inexpensive methods of object and hand pose recognition for many applications. For example, to enable a user to make use of his or her hands to drive an application either displayed on a tablet screen or projected onto a table top. There is also a need to be able to discriminate accurately between events when a user's hand or digit touches such a display from events when a user's hand or digit hovers just above that display. A random decision forest is trained to enable recognition of hand poses and objects and optionally also whether those hand poses are touching or not touching a display surface. The random decision forest uses image features such as appearance, shape and optionally stereo image features. In some cases, the training process is cost aware. The resulting recognition system is operable in real-time.
    • 需要为许多应用提供简单,准确,快速和计算上便宜的对象和手姿态识别方法。 例如,为了使用户能够利用他或她的手来驱动显示在平板电脑屏幕上或投影到桌面上的应用程序。 当用户的手或数字在该显示器的正上方移动时,当用户的手或数字触发这样的显示时,还需要能够精确地区分事件之间的事件。 对随机决策林进行训练,以便能够识别手姿势和物体,并且可选地还可以确定那些手姿势是触摸还是不接触显示表面。 随机决策林使用图像特征,如外观,形状和可选的立体图像特征。 在某些情况下,培训过程是意识到成本。 所得到的识别系统可以实时操作。
    • 7. 发明申请
    • Image Segmentation Using Star-Convexity Constraints
    • 使用星形凸度约束的图像分割
    • US20110274352A1
    • 2011-11-10
    • US12776082
    • 2010-05-07
    • Andrew BlakeVarun GulshanCarsten RotherAntonio Criminisi
    • Andrew BlakeVarun GulshanCarsten RotherAntonio Criminisi
    • G06K9/34
    • G06T7/11G06T7/194G06T2207/20101G06T2207/20168
    • Image segmentation using star-convexity constraints is described. In an example, user input specifies positions of one or more star centers in a foreground to be segmented from a background of an image. In embodiments, an energy function is used to express the problem of segmenting the image and that energy function incorporates a star-convexity constraint which limits the number of possible solutions. For example, the star-convexity constraint may be that, for any point p inside the foreground, all points on a shortest path (which may be geodesic or Euclidean) between the nearest star center and p also lie inside the foreground. In some examples continuous star centers such as lines are used. In embodiments a user may iteratively edit the star centers by adding brush strokes to the image in order to progressively change the star-convexity constraints and obtain an accurate segmentation.
    • 描述了使用星形凸度约束的图像分割。 在一个示例中,用户输入指定要从图像的背景分割的前景中的一个或多个星形中心的位置。 在实施例中,能量函数用于表示分割图像的问题,并且能量函数包含限制可能解决方案数量的星形 - 凸度约束。 例如,星凸约束可以是,对于前景中的任何点p,最近的星中心和p之间的最短路径上的所有点(可以是测地线或欧几里德)也位于前景内。 在一些示例中,使用诸如线的连续星形中心。 在实施例中,用户可以通过向图像中添加画笔笔触来迭代地编辑星形中心,以逐渐改变星形凸度约束并获得准确的分割。
    • 8. 发明授权
    • Stereo image segmentation
    • 立体图像分割
    • US07991228B2
    • 2011-08-02
    • US12780857
    • 2010-05-14
    • Andrew BlakeAntonio CriminisiGeoffrey CrossVladimir KolmogorovCarsten Curt Eckard Rother
    • Andrew BlakeAntonio CriminisiGeoffrey CrossVladimir KolmogorovCarsten Curt Eckard Rother
    • G06K9/34
    • G06K9/00234G06K9/342G06K9/38G06K9/4652G06T7/11G06T7/162G06T7/194G06T2207/10021G06T2207/10024G06T2207/20072
    • Real-time segmentation of foreground from background layers in binocular video sequences may be provided by a segmentation process which may be based on one or more factors including likelihoods for stereo-matching, color, and optionally contrast, which may be fused to infer foreground and/or background layers accurately and efficiently. In one example, the stereo image may be segmented into foreground, background, and/or occluded regions using stereo disparities. The stereo-match likelihood may be fused with a contrast sensitive color model that is initialized or learned from training data. Segmentation may then be solved by an optimization algorithm such as dynamic programming or graph cut. In a second example, the stereo-match likelihood may be marginalized over foreground and background hypotheses, and fused with a contrast-sensitive color model that is initialized or learned from training data. Segmentation may then be solved by an optimization algorithm such as a binary graph cut.
    • 可以通过分割过程来提供来自双目视频序列中的背景层的前景的实时分割,分割过程可以基于一个或多个因素,包括立体匹配,颜色和可选对比的可能性,其可以融合到推断前景和 /或背景层准确高效。 在一个示例中,立体图像可以使用立体声差异被分割成前景,背景和/或遮挡区域。 立体匹配似然率可以与从训练数据初始化或学习的对比度敏感颜色模型融合。 然后可以通过诸如动态规划或图形切割的优化算法来解决分割。 在第二个例子中,立体匹配似然度在前景和背景假设上可能被边缘化,并且与从训练数据初始化或学习的对比度敏感颜色模型融合。 然后可以通过诸如二进制图切割的优化算法来解决分割。
    • 10. 发明申请
    • IMAGE PROCESSING USING GEODESIC FORESTS
    • 使用地质景观的图像处理
    • US20100272367A1
    • 2010-10-28
    • US12431421
    • 2009-04-28
    • Antonio CriminisiToby Sharp
    • Antonio CriminisiToby Sharp
    • G06K9/46
    • G06K9/6215G06T11/001
    • Image processing using geodesic forests is described. In an example, a geodesic forest engine determines geodesic shortest-path distances between each image element and a seed region specified in the image in order to form a geodesic forest data structure. The geodesic distances take into account gradients in the image of a given image modality such as intensity, color, or other modality. In some embodiments, a 1D processing engine carries out 1D processing along the branches of trees in the geodesic forest data structure to form a processed image. For example, effects such as ink painting, edge-aware texture flattening, contrast-aware image editing, forming animations using geodesic forests and other effects are achieved using the geodesic forest data structure. In some embodiments the geodesic forest engine uses a four-part raster scan process to achieve real-time processing speeds and parallelization is possible in many of the embodiments.
    • 描述了使用测地森林进行图像处理。 在一个示例中,测地森林引擎确定每个图像元素与图像中指定的种子区域之间的测距最短路径距离,以形成测地森林数据结构。 测距距离考虑了给定图像形态(如强度,颜色或其他形式)图像中的渐变。 在一些实施例中,1D处理引擎沿着测地森林数据结构中的树的分支执行1D处理,以形成经处理的图像。 例如,使用测地森林数据结构实现诸如水墨绘画,边缘感知纹理平整,对比度感知图像编辑,使用测地森林形成动画等效果。 在一些实施例中,测地森林引擎使用四部分光栅扫描过程来实现实时处理速度,并且在许多实施例中并行化是可能的。