会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Liposome-assisted synthesis of polymeric nanoparticles
    • 脂质体辅助合成聚合物纳米粒子
    • US06217901B1
    • 2001-04-17
    • US09579860
    • 2000-05-25
    • Michael G. PerrottStephen E. Barry
    • Michael G. PerrottStephen E. Barry
    • A61K9127
    • A61K9/5138A61K9/127Y10S977/897Y10S977/907Y10S977/927
    • Synthetic polymer complements (SPCs) are provided, as well as methods for their synthesis and use. The SPCs range in size from about 20 to about 1000 nm. The SPCs have surfaces that are complementary to surface sites of target molecules, resulting in the ability of the SPCs to selectively bind to molecular targets. The molecular recognition capability of these particles enables their use in diagnostic, therapeutic, and separation applications. The SPC is formed by contacting a target template molecule with a set of building blocks solubilized in the interior of a liposome, which building blocks are then polymerized into a network to form the synthetic polymer complement in the interior of the liposome. The target templates are removed to produce complementary sites in a SPC that map the surface of the target, resulting in a water-soluble SPC nanoparticle of similar dimensions as the interior of the liposome that originally supported it and capable of molecular recognition.
    • 提供合成聚合物互补物(SPC),以及其合成和使用的方法。 SPCs的尺寸范围为约20至约1000nm。 SPCs具有与靶分子的表面位点互补的表面,导致SPC选择性地结合分子靶标的能力。 这些颗粒的分子识别能力使其可用于诊断,治疗和分离应用。 通过使靶模板分子与溶解在脂质体内部的一组结构单元接触形成SPC,然后将该构建块聚合成网络以在脂质体的内部形成合成聚合物补体。 去除目标模板以在映射目标表面的SPC中产生互补位点,产生与原来支持它并能够进行分子识别的脂质体内部相似尺寸的水溶性SPC纳米颗粒。
    • 4. 发明授权
    • Non-linear optical polymeric article and method
    • 非线性光学聚合物制品及方法
    • US5026147A
    • 1991-06-25
    • US498028
    • 1990-03-23
    • David S. SoaneStephen E. Barry
    • David S. SoaneStephen E. Barry
    • B29C70/62B29C71/00G02F1/361
    • B29C71/0009B29C70/62G02F1/3615B29C2071/0054
    • Articles exhibiting non-linear optical properties useful as electrooptic devices are prepared where the dopant moieties are aligned at relatively low temperatures. An intermediate article is formed by swelling with a diluent including a pressurized gas, such as carbon dioxide. The dopant moieties dispersed in the polymer are aligned by applying an electric field while maintaining the polymer in the swollen state caused by diluent sorption. Substantially all the diluent can then be removed without the necessity of a temperature elevation above about room temperature since the pressurized gas of the diluent can be removed by lowering the pressure to about atmospheric conditions. Polymers with high glass transition temperatures, preferably at or above about 150.degree. C., can thus be used in preparing electrooptic devices.
    • 制备具有用作电光器件的非线性光学性质的物质,其中掺杂剂部分在较低温度下排列。 通过用包括加压气体如二氧化碳的稀释剂溶胀来形成中间制品。 分散在聚合物中的掺杂剂部分通过施加电场而排列,同时保持聚合物处于由稀释剂吸附引起的溶胀状态。 因此,基本上所有的稀释剂可以被除去,而不需要在大约室温以上的温度升高,因为稀释剂的加压气体可以通过将压力降低到大气条件来去除。 因此,具有高玻璃化转变温度,优选在约150℃以上的聚合物可用于制备电光装置。