会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 10. 发明授权
    • Precise fabrication of polymer microlens arrays
    • 聚合物微透镜阵列的精确制造
    • US07771630B2
    • 2010-08-10
    • US09792236
    • 2001-02-23
    • Daniel M. HartmannSadik C. EsenerOsman Kibar
    • Daniel M. HartmannSadik C. EsenerOsman Kibar
    • B29D11/00
    • G02B3/0018B29D11/00365B82Y10/00B82Y40/00G02B3/0012G02B3/0056G03F7/0002Y10T156/10
    • High performance microlens arrays are fabricated by (i) depositing liquid on the hydrophilic domains of substrates of patterned wettability by either (a) condensing liquid on the domains or (b) withdrawing the substrate from a liquid solution and (ii) optionally curing the liquid to form solid microlenses. The f-number (f#) of formed microlenses is controlled by adjusting liquid viscosity, surface tension, density, and index of refraction, as well as the surface free energies of the hydrophobic and hydrophilic areas. The f-number of formed microlenses is also adjustable by controlling substrate dipping angle and withdrawal speed, the array fill factor and the number of dip coats used. At an optimum withdrawal speed f# is minimized and array uniformity is maximized. At this optimum, arrays of f/3.48 microlenses were fabricated using one dip-coat with uniformity better than Δf/f˜±3.8% while multiple dip-coats permit production of f/1.38 microlens arrays and uniformity better than Δf/f˜±5.9%. Average f#s are reproducible to within 3.5%. The method is adaptable and extendible to precision parallel fabrication of (i) microlenses precisely sized, aligned and spatially positioned to various small light sources and optical fiber ends, (ii) conductive bump bonds on substrate pads, and (iii) conductive bonds between corresponding domains on separate perpendicular substrates, all of which are self-aligned.
    • 通过以下步骤制造高性能微透镜阵列:(i)通过(a)将液体冷凝在畴上,或(b)从液体溶液中取出基底和(ii)任选地固化液体,使液体沉积在具有图案化润湿性的基底的亲水区域上 以形成固体微透镜。 通过调节液体粘度,表面张力,密度和折射率以及疏水和亲水区域的表面自由能来控制形成的微透镜的f数(f#)。 形成的微透镜的f数也可以通过控制衬底浸渍角度和抽出速度,阵列填充因子和所用浸涂层的数量来调节。 在最佳退出速度f#被最小化并且阵列均匀性最大化。 在这个最佳条件下,使用一种比Dgr; f / f〜±3.8%更好的浸渍涂层制造f / 3.48微透镜阵列,而多个浸涂层允许生产f / 1.38微透镜阵列,并且均匀度优于&Dgr; f /f〜cooper5.9%。 平均f#s可重复到3.5%以内。 该方法适用于和可扩展以精确并行制造(i)精确尺寸,对准和空间定位于各种小光源和光纤端的微透镜,(ii)衬底焊盘上的导电凸块接合,以及(iii)相应的导电键 分离的垂直基底上的结构域都是自对准的。