会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • METHOD FOR CLASSIFICATION OF OBJECTS IN A GRAPH DATA STREAM
    • 在图形数据流中分类对象的方法
    • US20120054129A1
    • 2012-03-01
    • US12871168
    • 2010-08-30
    • Charu Aggarwal
    • Charu Aggarwal
    • G06F15/18G06F15/16
    • G06N99/005
    • A method for classifying objects in a graph data stream, including receiving a training stream of graph data, the training stream including a plurality of objects along with class labels that are associated with each of the objects, first determining discriminating sets of edges in the training stream for the class labels, wherein a discriminating set of edges is one that is indicative of the object that contains these edges having a given class label, receiving an incoming data stream of the graph data, wherein class labels have not yet been assigned to objects in the incoming data stream, second determining, based on the discriminating sets of edges, class labels that are associated with the objects in the incoming data stream; and outputting to an information repository object class label pairs based on the second determining.
    • 一种用于对图形数据流中的对象进行分类的方法,包括接收图形数据的训练流,训练流包括多个对象以及与每个对象相关联的类标签,首先确定训练中的边缘识别集合 用于类标签的流,其中,鉴别集合的边是指示包含具有给定类标签的这些边的对象,接收图数据的输入数据流,其中类标签尚未被分配给对象 在输入数据流中,基于所识别的边缘集合,第二确定与输入数据流中的对象相关联的类标签; 以及基于所述第二确定将信息输出到信息库对象类标签对。
    • 7. 发明申请
    • System and method for distributed privacy preserving data mining
    • 分布式隐私保护数据挖掘的系统和方法
    • US20060015474A1
    • 2006-01-19
    • US10892691
    • 2004-07-16
    • Charu AggarwalPhilip Yu
    • Charu AggarwalPhilip Yu
    • G06F17/30
    • G06F17/30539G06F21/6245G06F2216/03Y10S707/99931Y10S707/99932
    • Distributed privacy preserving data mining techniques are provided. A first entity of a plurality of entities in a distributed computing environment exchanges summary information with a second entity of the plurality of entities via a privacy-preserving data sharing protocol such that the privacy of the summary information is preserved, the summary information associated with an entity relating to data stored at the entity. The first entity may then mine data based on at least the summary information obtained from the second entity via the privacy-preserving data sharing protocol. The first entity may obtain, from the second entity via the privacy-preserving data sharing protocol, information relating to the number of transactions in which a particular itemset occurs and/or information relating to the number of transactions in which a particular rule is satisfied.
    • 提供分布式隐私保护数据挖掘技术。 分布式计算环境中的多个实体的第一实体经由隐私保护数据共享协议与多个实体中的第二实体交换摘要信息,使得保留摘要信息的隐私,与 与实体存储的数据相关的实体。 然后,第一实体可以至少基于通过隐私保护数据共享协议从第二实体获得的摘要信息来挖掘数据。 第一实体可以通过隐私保护数据共享协议从第二实体获得与特定项目集出现的交易数量有关的信息和/或与其中满足特定规则的交易数量有关的信息。
    • 9. 发明申请
    • System and method of flexible data reduction for arbitrary applications
    • 用于任意应用的灵活数据简化的系统和方法
    • US20060026175A1
    • 2006-02-02
    • US10901278
    • 2004-07-28
    • Charu Aggarwal
    • Charu Aggarwal
    • G06F7/00
    • G06F17/30943G06K9/6229H03M7/30Y10S707/99932Y10S707/99942
    • The present invention is directed to the use of an evolutionary algorithm to locate optimal solution subspaces. The evolutionary algorithm uses a point-based coding of the subspace determination problem and searches selectively over the space of possible coded solutions. Each feasible solution to the problem, or individual in the population of feasible solutions, is coded as a string, which facilitates use of the evolutionary algorithm to determine the optimal solution to the fitness function. The fitness of each string is determined by solving the objective function for that string. The resulting fitness value can then be converted to a rank, and all of the members of the population of solutions can be evaluated using selection, crossover, and mutation processes that are applied sequentially and iteratively to the individuals in the population of solutions. The population of solutions is updated as the individuals in the population evolve and converge, that is become increasingly genetically similar to one another. The iterations of selection, crossover and mutation are performed until a desired level of convergence among the individuals in the population of solutions has been achieved.
    • 本发明涉及使用进化算法来定位最优解子空间。 进化算法使用子空间确定问题的基于点的编码,并在可能的编码解决方案的空间上有选择地搜索。 问题的每个可行解决方案或可行解决方案中的个体都被编码为字符串,这有助于使用进化算法来确定适合度函数的最优解。 每个字符串的适合度是通过求解该字符串的目标函数来确定的。 然后可以将得到的适合度值转换成等级,并且可以使用对于解决方案群体中的个体顺序和迭代地应用的选择,交叉和突变过程来评估解决方案群体的所有成员。 解决方案的人口随着人口中的个体发展和趋同而得到更新,这种变化越来越多地基因上彼此相似。 执行选择,交叉和突变的迭代,直到解决方案群体中的个体之间达到期望的收敛水平。