会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • SYSTEM AND METHOD FOR SCALED MULTINOMIAL-DIRICHLET BAYESIAN EVIDENCE FUSION
    • 系统和方法用于标准化的DIRICHLET BAYESIAN证据融合
    • US20140006334A1
    • 2014-01-02
    • US13535954
    • 2012-06-28
    • David M. Doria
    • David M. Doria
    • G06N5/02
    • G06N99/005G06N5/04G06N7/005
    • A fusion method, implemented by one or more processors, for classifying a target having class types. The method includes: obtaining evidence from one or more classifiers, the evidence represented by scores from the one or more classifiers; representing the obtained evidence in a Bayesian context, where the Bayesian beliefs are obtained from the scores; obtaining new evidence, the new evidence represented by new scores from the classifiers; representing the obtained new evidence in an enhanced Bayesian context, where the enhanced Bayesian beliefs are obtained from the new scores; combining the scores and the new scores over multiple times; combining the evidence and the new evidence over multiple times; and using the combined scores and the combined evidence for each of the plurality of class types to classify the target.
    • 一种由一个或多个处理器实现的用于对具有类类型的目标进行分类的融合方法。 该方法包括:从一个或多个分类器获得证据,由一个或多个分类器的分数表示的证据; 代表在贝叶斯语境中获得的证据,贝叶斯信念是从得分中获得的; 获得新证据,来自分类人员的新成绩的新证据; 代表在增强的贝叶斯语境中获得的新证据,其中从新分数获得增强的贝叶斯信念; 多次结合得分和新分数; 结合证据和新证据多次; 并且使用组合得分和多个类型中的每一个的组合证据来对目标进行分类。
    • 3. 发明授权
    • Fusion for automated target recognition
    • 融合用于自动化目标识别
    • US08155807B2
    • 2012-04-10
    • US12398116
    • 2009-03-04
    • David M. DoriaRobert T. Frankot
    • David M. DoriaRobert T. Frankot
    • G06F19/00
    • G06K9/6289G06K9/3241
    • A method of predicting a target type in a set of target types from at least one image is provided. At least one image is obtained. A first and second set of confidence values and associated azimuth angles are determined for each target type in the set of target types from the at least one image. The first and second set of confidence values are fused for each of the azimuth angles to produce a fused curve for each target type in the set of target types. When multiple images are obtained, first and second set of possible detections are compiled corresponding to regions of interest in the multiple images. The possible detections are associated by regions of interest. The fused curves are produced for every region of interest. In the embodiments, the target type is predicted from the set of target types based on criteria concerning the fused curve.
    • 提供了一种从至少一个图像中预测一组目标类型中的目标类型的方法。 至少获得一个图像。 针对来自至少一个图像的目标类型集合中的每个目标类型确定第一和第二组置信度值和相关方位角。 第一和第二组置信度值针对每个方位角进行融合,以产生目标类型集合中每种目标类型的融合曲线。 当获得多个图像时,第一组和第二组可能的检测被对应于多个图像中的感兴趣区域被编译。 可能的检测与感兴趣的区域相关联。 为每个感兴趣区域产生融合曲线。 在实施例中,基于与融合曲线有关的标准,从目标类型集合预测目标类型。
    • 4. 发明授权
    • Position and orientation estimation neural network system and method
    • 位置和方向估计神经网络系统及方法
    • US5459636A
    • 1995-10-17
    • US186181
    • 1994-01-14
    • Allen GeeDavid M. Doria
    • Allen GeeDavid M. Doria
    • G06F15/18G06K9/64G06N3/00G06T1/00G06T7/00G06K9/00
    • G06T7/0046G06K9/6203
    • Disclosed are a system and method for determining the pose (translation, rotation, and scale), or position and orientation, of a model object that best matches a target object located in image data. Through an iterative process small adjustments are made to the original position and orientation of the model object until it converges to a state that best matches the target object contained in the image data. Edge data representative of edges of the target object and edge data representative of the model object are processed for each data point in the model object relative to each point in the target object to produce a set of minimum distance vectors between the model object and the target object. A neural network estimates translation, rotation, and scaling adjustments that are to be made to the model object. Pose of the model object is adjusted relative to the target object based upon the estimated translation, rotation, and scaling adjustments provided by the neural network. Iterative calculation of the minimum distance vectors, estimation of the translation, rotation, and scaling adjustments, and adjustment of the position and orientation of the model object is adapted to reposition the model object until it substantially overlays the target object. Final position of the model object provides an estimate of the position and orientation of the target object in the digitized image.
    • 公开了一种用于确定与位于图像数据中的目标对象最佳匹配的模型对象的姿态(平移,旋转和缩放)或位置和取向的系统和方法。 通过迭代过程,对模型对象的原始位置和方向进行小的调整,直到它收敛到与图像数据中包含的目标对象最佳匹配的状态。 针对目标对象的边缘和表示模型对象的边缘数据的边缘数据针对目标对象中的每个点针对模型对象中的每个数据点进行处理,以产生模型对象与目标之间的一组最小距离向量 目的。 神经网络估计要对模型对象进行的平移,旋转和缩放调整。 基于由神经网络提供的估计的平移,旋转和缩放调整,相对于目标对象来调整模型对象的姿态。 最小距离矢量的迭代计算,平移的估计,旋转和缩放调整以及模型对象的位置和方向的调整适于重新定位模型对象,直到它大致覆盖目标对象。 模型对象的最终位置提供了数字化图像中目标对象的位置和方向的估计。
    • 5. 发明授权
    • Performance model for synthetic aperture radar automatic target recognition and method thereof
    • 合成孔径雷达自动目标识别性能模型及其方法
    • US08681037B2
    • 2014-03-25
    • US13096913
    • 2011-04-28
    • David M. Doria
    • David M. Doria
    • G01S13/00
    • G01S13/90G01S7/412G06K9/6277
    • A target correlation matrix is generated for multiple two-class combinations of target types each having a target correlation and a synthetic aperture radar observation space. A target probability density of a target radar cross-section signature and a background probability density of a background radar cross-section signature are utilized. The observation space of each of the two-class combinations is partitioned into a target partition and at least one background partition in accordance with the target correlation. A conditional log likelihood is calculated using at least one random number for each of the partitions in accordance with the target probability density and the background probability density, and summed according to the two-class combinations. A maximum log likelihood is calculated from the summed conditional log likelihoods given that one target type of the multiple two-class combinations is assumed to be true. An automatic target recognition performance prediction based on the maximum log likelihood is generated.
    • 对于具有目标相关性和合成孔径雷达观测空间的目标类型的多个两类组合,生成目标相关矩阵。 利用目标雷达横截面签名的目标概率密度和背景雷达截面签名的背景概率密度。 根据目标相关性,将两类组合中的每一个的观察空间划分为目标分区和至少一个背景分区。 使用根据目标概率密度和背景概率密度的每个分区的至少一个随机数来计算条件对数似然,并且根据两类组合求和。 假定一个目标类型的多个两类组合被假设为真,则从求和的条件对数似然性计算最大对数似然。 生成基于最大对数似然度的自动目标识别性能预测。
    • 7. 发明授权
    • System and method for scaled multinomial-dirichlet bayesian evidence fusion
    • 用于缩放多项式dirichlet贝叶斯证据融合的系统和方法
    • US08781992B2
    • 2014-07-15
    • US13535954
    • 2012-06-28
    • David M. Doria
    • David M. Doria
    • G06N99/00G06N5/04
    • G06N99/005G06N5/04G06N7/005
    • A fusion method, implemented by one or more processors, for classifying a target having class types. The method includes: obtaining evidence from one or more classifiers, the evidence represented by scores from the one or more classifiers; representing the obtained evidence in a Bayesian context, where the Bayesian beliefs are obtained from the scores; obtaining new evidence, the new evidence represented by new scores from the classifiers; representing the obtained new evidence in an enhanced Bayesian context, where the enhanced Bayesian beliefs are obtained from the new scores; combining the scores and the new scores over multiple times; combining the evidence and the new evidence over multiple times; and using the combined scores and the combined evidence for each of the plurality of class types to classify the target.
    • 一种由一个或多个处理器实现的用于对具有类类型的目标进行分类的融合方法。 该方法包括:从一个或多个分类器获得证据,由一个或多个分类器的分数表示的证据; 代表在贝叶斯语境中获得的证据,贝叶斯信念是从得分中获得的; 获得新证据,来自分类人员的新成绩的新证据; 代表在增强的贝叶斯语境中获得的新证据,其中从新分数获得增强的贝叶斯信念; 多次结合得分和新分数; 结合证据和新证据多次; 并且使用组合得分和多个类型中的每一个的组合证据来对目标进行分类。
    • 8. 发明申请
    • FUSION FOR AUTOMATED TARGET RECOGNITION
    • 自动化目标识别的融合
    • US20100226534A1
    • 2010-09-09
    • US12398116
    • 2009-03-04
    • David M. Doria
    • David M. Doria
    • G06K9/00
    • G06K9/6289G06K9/3241
    • A method of predicting a target type in a set of target types from at least one image is provided. At least one image is obtained. A first and second set of confidence values and associated azimuth angles are determined for each target type in the set of target types from the at least one image. The first and second set of confidence values are fused for each of the azimuth angles to produce a fused curve for each target type in the set of target types. When multiple images are obtained, first and second set of possible detections are compiled corresponding to regions of interest in the multiple images. The possible detections are associated by regions of interest. The fused curves are produced for every region of interest. In the embodiments, the target type is predicted from the set of target types based on criteria concerning the fused curve.
    • 提供了一种从至少一个图像中预测一组目标类型中的目标类型的方法。 至少获得一个图像。 针对来自至少一个图像的目标类型集合中的每个目标类型确定第一和第二组置信度值和相关方位角。 第一和第二组置信度值针对每个方位角进行融合,以产生目标类型集合中每种目标类型的融合曲线。 当获得多个图像时,第一组和第二组可能的检测被对应于多个图像中的感兴趣区域被编译。 可能的检测与感兴趣的区域相关联。 为每个感兴趣区域产生融合曲线。 在实施例中,基于与融合曲线有关的标准,从目标类型集合预测目标类型。