会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • METHOD AND SYSTEM TO CORRECT CONTRACTILITY BASED ON NON-HEART FAILURE FACTORS
    • 基于非心脏衰竭因子校正合并的方法和系统
    • US20120239104A1
    • 2012-09-20
    • US13049774
    • 2011-03-16
    • Stuart RosenbergCecilia Qin XiJong GillBrian Jeffrey WenzelYelena NabutovskyWilliam Hsu
    • Stuart RosenbergCecilia Qin XiJong GillBrian Jeffrey WenzelYelena NabutovskyWilliam Hsu
    • A61N1/365
    • A61N1/36585A61B5/02028A61B5/042A61N1/3627A61N1/36507A61N1/36521A61N1/36564A61N1/36578
    • A method is provided for trending heart failure based on heart contractility information comprises measuring cardiogenic impedance (CI) measurements along at least a first vector through a heart over a period of time. The method determines contractility estimates from the CI measurements, the contractility estimates relating to contractility of the heart. The method further obtains physiologic and/or surrogate signals representing estimates for or direct measurements of at least one of cardiac volume and pressure of the heart when the CI measurements were obtained. The method identifies correction factors based on the physiologic and/or surrogate signals and applies the correction factors to the contractility estimates to produce contractility trend values over the period of time. A system is provided for trending heart failure based on heart contractility information which comprises inputs to receive cardiogenic impedance (CI) measurements taken along at least a first vector through a heart over a period of time. The system includes a contractility module to determine contractility estimates from the CI measurements, the contractility estimates relating to contractility of the heart and a collection module to receive physiologic and/or surrogate signals representing estimates for or direct measurements of at least one of cardiac volume and pressure of the heart when the CI measurements were obtained. A factor module is also provided to identify correction factors based on the physiologic and/or surrogate signals and a correction module to apply the correction factors to the contractility estimates to produce contractility trend values over the period of time.
    • 提供了一种基于心脏收缩性信息来趋向于心力衰竭的方法,包括在一段时间内通过心脏沿着至少第一载体测量心源阻抗(CI)测量。 该方法确定CI测量的收缩性估计值,与心脏收缩性相关的收缩性估计值。 当获得CI测量时,该方法进一步获得表示心脏体积和心脏压力中的至少一个的估计值或直接测量值的生理和/或替代信号。 该方法基于生理和/或替代信号识别校正因子,并将修正因子应用于收缩性估计以产生一段时间内的收缩趋势值。 提供了一种用于基于心脏收缩性信息来趋向心力衰竭的系统,其包括用于在一段时间内通过心脏沿着至少第一载体进行的心源阻抗(CI)测量的输入。 该系统包括收缩性模块,用于根据CI测量值确定收缩性估计值,与心脏的收缩性相关的收缩性估计值以及收集模块以接收表示心脏体积和/或心脏容积中的至少一个的估计值或/或直接测量值的生理和/或替代信号, 获得CI测量时心脏的压力。 还提供了一个因素模块,用于根据生理和/或替代信号识别校正因子,以及校正模块,以将修正因子应用于收缩性估计,以产生一段时间内的收缩趋势值。
    • 7. 发明申请
    • Systems and Methods for Activating and Controlling Impedance-Based Detection Systems of Implantable Medical Devices
    • 用于激活和控制可植入医疗器械的基于阻抗的检测系统的系统和方法
    • US20120221066A1
    • 2012-08-30
    • US13035773
    • 2011-02-25
    • Stuart RosenbergCecilia Qin XiYelena NabutovskyBrian Jeffrey WenzelJong GillWilliam Hsu
    • Stuart RosenbergCecilia Qin XiYelena NabutovskyBrian Jeffrey WenzelJong GillWilliam Hsu
    • A61N1/36
    • A61N1/3627A61N1/3702A61N1/372
    • Techniques are provided for use with implantable medical devices for addressing encapsulation effects, particularly in the detection of cardiac decompensation events such as heart failure (HF) or cardiogenic pulmonary edema (PE.) In one example, during an acute interval following device implant, cardiac decompensation is detected using heart rate variability (HRV), ventricular evoked response (ER) or various other non-impedance-based parameters that are insensitive to component encapsulation effects. During the subsequent chronic interval, decompensation is detected using intracardiac or transthoracic impedance signals. In another example, the degree of maturation of encapsulation of implanted components is assessed using impedance frequency-response measurements or based on the frequency bandwidth of heart sounds or other physiological signals. In this manner, impedance-based HF/PE detection systems can be activated as soon as component encapsulation has matured, without necessarily waiting until completion of a preset post-implant maturation interval, often set to forty-five days or more.
    • 提供技术用于可植入医疗装置,用于解决封装效应,特别是在心脏代偿失调事件如心力衰竭(HF)或心源性肺水肿(PE)的检测中。在一个实例中,在装置植入后的急性期间,心脏 使用心率变异性(HRV),心室诱发反应(ER)或对组件封装效应不敏感的各种其他基于非阻抗的参数来检测代偿失调。 在随后的慢性间隔期间,使用心内或经胸阻抗信号检测代偿失调。 在另一示例中,使用阻抗频率响应测量值或基于心脏声音或其他生理信号的频率带宽来评估植入部件的封装的成熟程度。 以这种方式,一旦组件封装已经成熟,就可以激活基于阻抗的HF / PE检测系统,而不必等待直到完成植入后成熟间隔的预设,通常设置为四十五天或更长时间。
    • 9. 发明授权
    • Systems and methods for activating and controlling impedance-based detection systems of implantable medical devices
    • 用于激活和控制可植入医疗设备的基于阻抗的检测系统的系统和方法
    • US08295918B2
    • 2012-10-23
    • US13035773
    • 2011-02-25
    • Stuart RosenbergCecilia Q. XiYelena NabutovskyBrian J. WenzelJong GillWilliam Hsu
    • Stuart RosenbergCecilia Q. XiYelena NabutovskyBrian J. WenzelJong GillWilliam Hsu
    • A61B5/04
    • A61N1/3627A61N1/3702A61N1/372
    • Techniques are provided for use with implantable medical devices for addressing encapsulation effects, particularly in the detection of cardiac decompensation events such as heart failure (HF) or cardiogenic pulmonary edema (PE.) In one example, during an acute interval following device implant, cardiac decompensation is detected using heart rate variability (HRV), ventricular evoked response (ER) or various other non-impedance-based parameters that are insensitive to component encapsulation effects. During the subsequent chronic interval, decompensation is detected using intracardiac or transthoracic impedance signals. In another example, the degree of maturation of encapsulation of implanted components is assessed using impedance frequency-response measurements or based on the frequency bandwidth of heart sounds or other physiological signals. In this manner, impedance-based HF/PE detection systems can be activated as soon as component encapsulation has matured, without necessarily waiting until completion of a preset post-implant maturation interval, often set to forty-five days or more.
    • 提供技术用于可植入医疗装置,用于解决封装效应,特别是在心脏代偿失调事件如心力衰竭(HF)或心源性肺水肿(PE)的检测中。在一个实例中,在装置植入后的急性期间,心脏 使用心率变异性(HRV),心室诱发反应(ER)或对组件封装效应不敏感的各种其他基于非阻抗的参数来检测代偿失调。 在随后的慢性间隔期间,使用心内或经胸阻抗信号检测代偿失调。 在另一示例中,使用阻抗频率响应测量值或基于心脏声音或其他生理信号的频率带宽来评估植入部件的封装的成熟程度。 以这种方式,一旦组件封装已经成熟,就可以激活基于阻抗的HF / PE检测系统,而不必等待直到完成植入后成熟间隔的预设,通常设置为四十五天或更长时间。
    • 10. 发明授权
    • Systems and methods for activating and controlling impedance-based detection systems of implantable medical devices
    • 用于激活和控制可植入医疗设备的基于阻抗的检测系统的系统和方法
    • US08380303B2
    • 2013-02-19
    • US13035793
    • 2011-02-25
    • Stuart RosenbergCecilia Q. XiYelena NabutovskyBrian J. WenzelJong GillWilliam Hsu
    • Stuart RosenbergCecilia Q. XiYelena NabutovskyBrian J. WenzelJong GillWilliam Hsu
    • A61N1/00
    • A61B5/0538A61B5/686A61N1/36507A61N1/36521A61N1/36592A61N1/3684
    • Techniques are provided for use with implantable medical devices for addressing encapsulation effects, particularly in the detection of cardiac decompensation events such as heart failure (HF) or cardiogenic pulmonary edema (PE.) In one example, during an acute interval following device implant, cardiac decompensation is detected using heart rate variability (HRV), ventricular evoked response (ER) or various other non-impedance-based parameters that are insensitive to component encapsulation effects. During the subsequent chronic interval, decompensation is detected using intracardiac or transthoracic impedance signals. In another example, the degree of maturation of encapsulation of implanted components is assessed using impedance frequency-response measurements or based on the frequency bandwidth of heart sounds or other physiological signals. In this manner, impedance-based HF/PE detection systems can be activated as soon as component encapsulation has matured, without necessarily waiting until completion of a preset post-implant maturation interval, often set to forty-five days or more.
    • 提供技术用于可植入医疗装置,用于解决封装效应,特别是在心脏代偿失调事件如心力衰竭(HF)或心源性肺水肿(PE)的检测中。在一个实例中,在装置植入后的急性期间,心脏 使用心率变异性(HRV),心室诱发反应(ER)或对组件封装效应不敏感的各种其他基于非阻抗的参数来检测代偿失调。 在随后的慢性间隔期间,使用心内或经胸阻抗信号检测代偿失调。 在另一示例中,使用阻抗频率响应测量值或基于心脏声音或其他生理信号的频率带宽来评估植入部件的封装的成熟程度。 以这种方式,一旦组件封装已经成熟,就可以激活基于阻抗的HF / PE检测系统,而不必等待直到完成植入后成熟间隔的预设,通常设置为四十五天或更长时间。