会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • Image Blending
    • 图像混合
    • US20090129700A1
    • 2009-05-21
    • US11997033
    • 2006-07-28
    • Carsten RotherVladimir KolmogorovAndrew Blake
    • Carsten RotherVladimir KolmogorovAndrew Blake
    • G06K9/36
    • G06T11/00
    • Previously, Poisson blending has been used for image blending including cloning an object onto a target background and blending pairs of source images together. Such Poisson blending works well in many situations. However, whilst this method is always workable, we have found that discolorations sometimes occur. We realized that these discolorations occur when the gradient of the source image is preserved too insistently, at the expense of preserving object and background color. In some situations object outlines become smeared or blurred. We develop a color preservation term and a fragility measure to address these problems. This gives a user additional control to obtain smooth compositions and reduce discoloration artifacts.
    • 以前,Poisson混合已被用于图像混合,包括将对象克隆到目标背景上,并将一组源图像混合在一起。 这种泊松混合在许多情况下运作良好。 然而,虽然这种方法总是可行的,但我们发现有时会发生变色。 我们意识到,当源图像的梯度太保守地保留对象和背景色的代价时,会发生这些变色。 在某些情况下,对象轮廓变得模糊或模糊。 我们开发一个保色术语和一个脆弱的措施来解决这些问题。 这给予用户额外的控制以获得平滑的组合物并减少变色伪影。
    • 5. 发明授权
    • Image labeling using multi-scale processing
    • 图像标注使用多尺度处理
    • US08213726B2
    • 2012-07-03
    • US12488119
    • 2009-06-19
    • Pushmeet KohliCarsten RotherVictor Lempitsky
    • Pushmeet KohliCarsten RotherVictor Lempitsky
    • G06K9/68
    • G06K9/6857G06K9/6297G06T7/143
    • Multi-scale processing may be used to reduce the memory and computational requirements of optimization algorithms for image labeling, for example, for object segmentation, 3D reconstruction, stereo correspondence, optical flow and other applications. For example, in order to label a large image (or 3D volume) a multi-scale process first solves the problem at a low resolution, obtaining a coarse labeling of an original high resolution problem. This labeling is refined by solving another optimization on a subset of the image elements. In examples, an energy function for a coarse level version of an input image is formed directly from an energy function of the input image. In examples, the subset of image elements may be selected using a measure of confidence in the labeling.
    • 可以使用多尺度处理来减少用于图像标记的优化算法的存储器和计算要求,例如用于对象分割,3D重建,立体声对应,光流等应用。 例如,为了标注大图像(或3D体积),多尺度处理首先以低分辨率解决问题,获得原始高分辨率问题的粗略标签。 通过在图像元素的子集上求解另一个优化来改进该标记。 在示例中,输入图像的粗略级版本的能量函数直接从输入图像的能量函数形成。 在示例中,图像元素的子集可以使用标签中置信度的度量来选择。
    • 6. 发明授权
    • Image blending
    • 图像混合
    • US08019177B2
    • 2011-09-13
    • US11997033
    • 2006-07-28
    • Carsten RotherVladimir KolmogorovAndrew Blake
    • Carsten RotherVladimir KolmogorovAndrew Blake
    • G06K9/36
    • G06T11/00
    • Previously, Poisson blending has been used for image blending including cloning an object onto a target background and blending pairs of source images together. Such Poisson blending works well in many situations. However, whilst this method is always workable, we have found that discolorations sometimes occur. We realized that these discolorations occur when the gradient of the source image is preserved too insistently, at the expense of preserving object and background color. In some situations object outlines become smeared or blurred. We develop a color preservation term and a fragility measure to address these problems. This gives a user additional control to obtain smooth compositions and reduce discoloration artifacts.
    • 以前,Poisson混合已被用于图像混合,包括将对象克隆到目标背景上,并将一组源图像混合在一起。 这种泊松混合在许多情况下运作良好。 然而,虽然这种方法总是可行的,但我们发现有时会发生变色。 我们意识到,当源图像的梯度太保守地保留对象和背景色的代价时,会发生这些变色。 在某些情况下,对象轮廓变得模糊或模糊。 我们开发一个保色术语和一个脆弱的措施来解决这些问题。 这给予用户额外的控制以获得平滑的组合物并减少变色伪影。
    • 8. 发明申请
    • Labeling Image Elements
    • 标记图像元素
    • US20100128984A1
    • 2010-05-27
    • US12323355
    • 2008-11-25
    • Victor LempitskyCarsten RotherAndrew Blake
    • Victor LempitskyCarsten RotherAndrew Blake
    • G06K9/34
    • G06K9/6224
    • An image processing system is described which automatically labels image elements of a digital image. In an embodiment an energy function describing the quality of possible labelings of an image is globally optimized to find an output labeled image. In the embodiment, the energy function comprises terms that depend on at least one non-local parameter. For example, the non-local parameter describes characteristics of image elements having the same label. In an embodiment the global optimization is achieved in a practical, efficient manner by using a tree structure to represent candidate values of the non-local parameter and by using a branch and bound process. In some embodiments, the branch and bound process comprises evaluating a lower bound of the energy function by using a min-cut process. For example, the min-cut process enables the lower bound to be evaluated efficiently using a graphical data structure to represent the lower bound.
    • 描述了自动标记数字图像的图像元素的图像处理系统。 在一个实施例中,描述图像的可能标记的质量的能量函数被全局优化以找到输出标记图像。 在该实施例中,能量函数包括依赖于至少一个非局部参数的项。 例如,非本地参数描述具有相同标签的图像元素的特征。 在一个实施例中,通过使用树结构来表示非局部参数的候选值并且通过使用分支和绑定过程,以实用,有效的方式实现全局优化。 在一些实施例中,分支和绑定过程包括通过使用最小切割过程来评估能量函数的下限。 例如,最小切割过程使得能够使用图形数据结构有效地评估下限来表示下限。