会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 10. 发明专利
    • Method of manufacturing photoelectric cell and oxide semiconductor for photoelectric cell
    • AU753205B2
    • 2002-10-10
    • AU3955899
    • 1999-05-28
    • CATALYSTS & CHEM IND CO
    • KOYANAGI TSUGUOKOMATSU MICHIOTANAKA HIROKAZUSHIRONO KATSUHIRO
    • C09C1/30H01G9/20H01M14/00C01G23/053
    • The first photoelectric cell of the present invention comprises: an insulating base having on its surface an electrode layer (1), the electrode layer (1) having on its surface a metal oxide semiconductor film (2) on which a photosensitizer is adsorbed; an insulating base having on its surface an electrode layer (3), the electrode layer (1) and the electrode layer (3) arranged opposite to each other; and an electrolyte sealed between the metal oxide semiconductor film (2) and the electrode layer (3), wherein at least one of the electrode-having insulating bases is transparent; and the metal oxide semiconductor film (2) comprises anatase titanium oxide particles. This first photoelectric cell includes a semiconductor film comprising anatase titanium oxide particles, having a high proportion of photosensitizer adsorbed, so that the electron mobility in the semiconductor film is high to thereby realize excellent photoelectric transfer efficiency. The second photoelectric cell of the present invention comprises: an insulating base having on its surface an electrode layer (1), the electrode layer (1) having on its surface a metal oxide semiconductor layer (2) on which a photosensitizer is adsorbed; an insulating base having on its surface an electrode layer (3), the electrode layer (1) and the electrode layer (3) arranged opposite to each other; and an electrolyte sealed between the metal oxide semiconductor layer (2) and the electrode layer (3), wherein conductive protrusions (4) jutting from the surface of the electrode layer (1) exist, the metal oxide semiconductor layer (2) formed so as to cover the conductive protrusions (4) and the electrode layer (1), and at least one of the electrode-layer-having insulating bases is transparent. In this second photoelectric cell, conductive protrusions are provided on the electrode surface, so that generated electrons not only can rapidly move toward the electrode but also are free from recombining with the photosensitizer. Moreover, in this photoelectric cell, not only is the adsorption proportion of photosensitizer high but also the moving of generated electrons is smooth. Therefore, the second photoelectric cell exhibits excellent photoelectric transfer efficiency.